
Computational Thinking in
LEGO® Education SPIKE™ Essential Lessons

LEGO, the LEGO logo, the Minifigure and the SPIKE logo are trademarks and/or copyrights of the LEGO Group. ©2021 The LEGO Group. All rights reserved. 20210628V1.

Computational thinking is a set of problem-
solving skills named for the processes
a computer uses to solve problems.
We use these skills – decomposition,
generalization, algorithmic thinking,
debugging, and abstract thinking – every

day to solve problems. Practicing and
learning computational thinking through
LEGO® Education SPIKE™ Essential lessons
supports students’ success in and beyond
the classroom.

Key Computational Thinking Skills

This skill Helps you… Everyday examples

Decomposition Break down problems into
smaller parts to explain or
solve the problem more
easily.

Preparing to travel includes subtasks, like booking the flight, reserving a hotel, packing a suitcase, etc. Completing
these subtasks makes the larger task more manageable. We can quickly and easily complete familiar tasks, such as
packing a suitcase, without having to develop a “new” solution. This saves time for completing new and unfamiliar
tasks like finding things to do and booking activities at the destination.

Generalization Recognize patterns
you can use to create a
solution.

Have you ever assembled a piece of furniture? Then you’ll understand the importance of recognizing patterns. For
example, when assembling multiple drawers for a small cabinet it’ll likely take you much longer to assemble the first
drawer than the fourth or fifth. When we repeat steps, we learn from our mistakes and can complete the steps more
quickly.

Algorithmic
thinking

Visualize and organize the
steps needed to achieve
the desired outcome.

When you cook from a recipe, you follow a series of steps to prepare a meal. You find the ingredients, rinse the
vegetables, chop the ingredients, then cook and finally serve the meal. This step-by-step process also enables us to
create and implement a solution to a problem.

Evaluating and
debugging

Evaluate a solution
to identify areas for
improvement and then
debug to correct errors in
the solution.

If your bread always fails to rise as it bakes, you can test the recipe to try to find the problem. By changing one
element at a time, like the amount of yeast or the baking time, you’ll eventually find out where it’s going wrong. You
test and evaluate the results to find and correct the problem. That’s debugging!

Abstract thinking Explain the chosen
solution and conceptualize
the idea with minimal
detail.

When describing a bicycle, we use details like it has two wheels, one in front of the other. These are defining
characteristics of a bicycle. Details such as its type and color add interest but aren’t required. Abstract thinking is the
process of filtering out specific details to create a representation of an idea we want to explain.

The table below shows how your students
will learn and develop their understanding
of these computational thinking skills
throughout the SPIKE Essential lessons.
Use this guidance to help you prepare
to teach these lessons with a focus on
driving the development of your students’
computational thinking skills. As you prepare
to teach each lesson, you can:

• Use the information in the last column to identify places in the lesson where your students
will practice and learn the skills.

• Use the information in the last column to assess your students’ progress. Give formative
feedback about their progress with using computational thinking skills. Ask questions like
these: How did you create the program? Why did you use those programming blocks? What
would you do to improve the program?

• Expand your knowledge and start talking with your students and colleagues about
computational thinking skills in an everyday language. What do they look like, how do we use
them to solve problems, and what’s the connection between the skills you learn from coding
and the skills you use to solve everyday problems?

Lesson Key Objective(s) Students will use computational thinking skills when they…

U
ni

t:
 G

re
at

 A
d

ve
nt

ur
es

1: Boat Trip Follow instructions to create
a program.

Create different program sequences with actions that control the motors to push the
boat in the water (Algorithmic thinking).

2: Arctic Ride Break a problem down into
smaller parts.

Break down the problem of creating a program into smaller parts to understand which
Movement Blocks to use (Decomposition). Create the program sequence for Leo’s round
trip journey using different Movement Blocks to control the snowmobile (Algorithmic
thinking).

3: Cave Car Describe a program’s
sequence of events, goals,
and expected outcome.

Create different program sequences with actions that control the cave car’s light
(Algorithmic thinking).

4: Animal Alarm Demonstrate an
understanding of cause and
effect to develop a program
to solve a problem.

Create a program sequence for an animal alarm using an Event Block to control when
the alarm goes off (Algorithmic thinking). Identify patterns and actions in the existing
program that can be reused to improve the program by using another Event Block to set
up actions for a different color (Generalization).

5: Underwater Quest Develop programs that use
simple loops to address a
problem.

Create a program sequence to move the submarine using Motor Blocks and a loop
(Algorithmic thinking). Identify patterns and actions in the existing program that can
be reused to change the program sequence based on modifications to the model
(Generalization).

6: Treehouse Camp Identify and fix errors in a
program (test and debug).

Create a program sequence to open the treehouse roof using Motor Blocks (Algorithmic
thinking). Come up with a solution to fix the program. Change the program based on
modifications to the model (Evaluating and debugging).

7: Great Desert Adventure Apply computational thinking
skills to solve the given
problem.

Apply all of the computational thinking skills in an open-ended challenge to create a way
for the team to get to the pyramids.

Lesson Key Objective(s) Students will use computational thinking skills when they…
U

ni
t:

 A
m

az
in

g
 A

m
us

em
en

t
Pa

rk

1: The Fast Lane Practice brainstorming to
generate ideas.

Create a program sequence that uses Event Blocks to turn on the Fast Lane’s light
when a yellow “ticket” is shown (Algorithmic thinking). Identify patterns and actions in
the existing program that can be reused to create more actions using a Loop Block to
automate the Fast Lane, or a Bar Graph Block to count how many times the Fast Lane has
been activated (Generalization).

2: Classic Carousel Improve and refine a
prototype as part of the
design process.

Create a program sequence that uses Motor Blocks to make the carousel spin
(Algorithmic thinking). Use patterns and actions from the existing program to refine and
improve the program (Generalization).

3: The Perfect Swing Change a solution to meet
the needs or wants of others.

Create a program sequence that uses Motor Blocks to move the swing (Algorithmic
thinking). Identify patterns and actions in the existing program that can be reused in a
loop to automate the swing and improve the program (Generalization).

4: Snack Stand Practice testing prototypes
to ensure that they meet
a need by modifying and
remixing a solution.

Create a program sequence that uses an Event Block to control when the snack stand
will deliver a snack (Algorithmic thinking). Identify patterns and actions in the existing
program that can be reused to improve the program (Generalization).

5: Twirling Teacups Modify a solution while
considering a specific goal
or outcome by refining and
improving the prototype.

Create a program sequence for the teacups using a Motor Block for movement and Event
Blocks to run parallel actions (Algorithmic thinking). Identify patterns and actions in the
existing program that can be reused to improve the program (Generalization).

6: The Spinning Ferris
Wheel

Modify an existing solution to
make it work properly.

Create a program sequence for the Ferris Wheel using Motor Blocks for movement and a
loop to control the rotations (Algorithmic thinking). Identify patterns and actions in the
existing program that can be reused to improve the program so the Ferris Wheel also
stops so that passengers can get on and off (Generalization).

7: The Most Amazing
Amusement Park

Apply engineering design
skills to solve a problem.

Apply all of the computational thinking skills in an open-ended challenge to create a
new amusement park ride.

Lesson Key Objective(s) Students will use computational thinking skills when they…
U

ni
t:

 H
ap

py
 T

ra
ve

le
r

1: River Ferry Develop a sequence to solve
a problem.

Decompose problems into
smaller parts.

Break down Daniel’s problem into smaller parts by discussing how to get from one place
to another (Decomposition). Create a program sequence for the ferry using Motor Blocks
(Algorithmic thinking).

2: Taxi! Taxi! Identify and fix errors in a
program (test and debug).

Break down the problem of creating a program into smaller parts to understand which
Movement Blocks to use for the taxi’s trip to the art museum (Decomposition). Create
and program a sequence that moves the taxi forward and uses Movement Blocks to make
a turn (Algorithmic thinking). Identify patterns and actions in the existing program that
can be reused for next trip (Generalization).

3: Hovering Helicopter Describe the choices they've
made when creating a
program.

Create and test automated
solutions.

Create a program sequence that uses Motor Blocks to move the helicopter’s rotor blades
(Algorithmic thinking). Look for patterns and actions that can be applied to the Tilt
Sensor in the second challenge when the helicopter is tilted (Generalization). Describe
what they’ve learned about the choices they made when creating their program
(Abstract thinking).

4: Swamp Boat Identify the parts of an
existing program that should
be modified.

Carry out tests to identify
where a program can be
modified.

Create a program sequence to identify crocodiles by turning on the swamp boat’s light
when “green” is detected (Algorithmic thinking). Identify patterns and actions that can
be used to modify the program by adding sounds, more lights, and bar graphs to count
the crocodiles (Generalization).

5: Cable Car Identify and fix errors in a
program to ensure it works as
intended (test and debug).

Create a program sequence that uses Motor Blocks to move the cable car and a loop to
control it (Algorithmic thinking). Come up with a solution to fix errors in the cable car’s
movement (Evaluating and debugging).

6: Big Bus Test and evaluate solutions
to determine whether they
meet a specific need.

Create a program sequence that uses Motor Blocks and the Color Sensor to make the bus
stop at the green bus stop (Algorithmic thinking).

7: Get Around Town Apply computational thinking
skills to solve a problem.

Apply all of the computational thinking skills in an open-ended challenge to create a way
for the team to get to the SPIKE Castle.

Lesson Key Objective(s) Students will use computational thinking skills when they…
U

ni
t:

 C
ra

zy
 C

ar
ni

va
l G

am
es

1: Mini Mini-Golf Explore the basic principles of
energy and their connection
to an object's speed.

Identify and describe the
relationship between speed
and energy.

Create a program sequence to get a hole-in-one using Motor Blocks to control hitting the
golf ball (Algorithmic thinking). Describe what they’ve learned about speed and energy
(Abstract thinking).

2: Bowling Fun! Predict outcomes of the
changes in energy that occur
when objects collide.

Observe and describe the
relationship between energy
and force.

Create a program sequence to get a strike using Motor Blocks to control the ball’s
movement (Algorithmic thinking). Describe what they’ve learned about the relationship
between energy and force (Abstract thinking).

3: High Stick Hockey Observe and describe how
energy can be transferred.

Predict how energy moves
from place to place.

Create a program sequence using Motor Blocks to run the hockey game. Identify patterns
and actions to use in a program loop (Generalization). Describe what they’ve learned
about how energy moves from place to place (Abstract thinking).

4: A-Maze-Ing Observe and explain how
interactions between two
objects can impact the
energy of an object.

Create a program sequence for the maze game using Motor Blocks and a sensor to
control the sound (Algorithmic thinking). Describe what they’ve learned about how
interactions between two objects can impact an object’s energy (Abstract thinking).

5: Avoid the Edge Explore and describe energy
conversion.

Create a program sequence for the game using the Tilt Sensor to count the number of
tilts (Algorithmic thinking). Describe what they’ve learned about energy conversion
(Abstract thinking).

6: Junior Pinball Apply ideas to refine a
solution that converts energy.

Test the solution to improve
and refine its function.

Create a program sequence for the pinball machine using Motor Blocks to start the game
(Algorithmic thinking). Modify the program by identifying patterns and actions to use in
a loop (Generalization).

7: Creative Carnival Games Apply existing scientific
knowledge of energy transfer
and collision to solve a
problem.

Apply all of the computational thinking skills in an open-ended challenge to create a new
carnival game.

Lesson Key Objective(s) Students will use computational thinking skills when they…
U

ni
t:

 Q
ui

rk
y

C
re

at
io

ns

1: Good Morning Machine Define and understand a
problem.

Brainstorm and iterate to
create a solution.

Break down Leo’s problem into smaller parts in order to define and understand the
problem (Decomposition). Create a program sequence for the waving machine using
Motor Blocks to move the hand. Modify the program by identifying patterns and actions
to use in a loop (Generalization).

2: Big Little Helper Create a possible solution
to a problem that has
constraints.

Improve on others’ ideas to
develop a new program.

Create a program sequence that controls the robot helper using Movement Blocks
(Algorithmic thinking). Identify patterns and actions in the existing program that can be
reused to enable the robot helper to follow Daniel home (Generalization).

3: High-Tech Playground Use the design process to
improve an existing object.

Develop, test, and refine
prototypes.

Create a program sequence for the seesaw using Motor Blocks and the Tilt Sensor
(Algorithmic thinking). Identify patterns and actions in the existing program that can be
reused to improve the seesaw (Generalization).

4: Trash Monster Machine Explore the benefits of
automated solutions.

Refine a prototype.

Create a program sequence for the Trash Monster using Motor Blocks and the Color
Sensor (Algorithmic thinking). Identify patterns and actions in the existing program
that can be reused to make the Trash Monster react to different-colored trash
(Generalization).

5: Winning Goal Identify the failure points of a
model or program.

Consider failure points in
order to make improvements.

Break down the problem by identifying the failures causing the program to not be able
to save a goal (Decomposition). Create a program sequence that uses Motor Blocks to
move the goal, making it harder to score (Algorithmic thinking). Identify patterns and
actions in the existing program that can be reused to improve the program using a loop
(Generalization).

6: Literary Randomizer Define success criteria to help
evaluate a solution.

Compare and contrast
different solutions.

Create a program sequence that picks a book genre using Light Blocks and a loop to
control the random selection (Algorithmic thinking).

7: Your School Creation Apply engineering design
skills in order to solve a
problem.

Practice brainstorming as
part of the design process.

Apply all of the computational thinking skills in an open-ended challenge to design a
new creation for the team’s classroom.

