

IFFRFNCF

Introduction to the New AIAG/VDA DFMEA

Matthew Barsalou

D 35 – May 23, 2021

Learning Objectives

- In this session you will:
 - Learn about changes implemented in the new FMEA Handbook
 - Be able to list the steps for creating a DFMEA
 - Evaluate risks based on Action Priority

Introduction to DFMEAs

 According to a poem by Lowe (1980), a kingdom fell due to a lack of a nail

• Sometimes it's the simple details that matter

WORLD CONFERENCE

ON QUALITY & IMPROVEMEN

 Design Failure Modes & Effects Analysis (DFMEA) helps identify & link "simple" details

Evolution

- Failure Modes & Effects Analysis (FMEA)
 - 1949: Introduced in military standard MIL-P-1629
 - 1960s: Used for NASA's Apollo program
 - 1970s: Used by Ford Motor Company
 - 1980s: Spread across industries

- Design-Failure Modes & Effects Analysis (DFMEA) – for design concepts
- Process-Failure Modes & Effects (PFMEA) – for assembly processes

DFMEAs

- Performed as early as possible in the design process
 - Identifies risks of failure
 - Prioritizes risks
 - Develops & implements improvement actions

DFMEA Documentation

Company Name Design Failure Modes and Effects Analys							Analysi	is								
Part:	FMEA Ty	/pe:	Custom	ner:		Part Nu	mber:	DFN	IEA Team:		FME/	A Nr.:	Versi	on Da	ite:	
Function	Requirement	Failu Mod		Failure Effect	Severity	Failure Cause	Prevention Actions	Occurrence	Detection Actions	Detection	RPN	Improveme Actions	ut Severity	Prevention	Detection	RPN

DFMEA Documentation

Company Name Design Failure Modes and Effects Analysis																		
Part:		FMEA Ty	pe:	Cus	stomer:		Part Nu	mber:	DFN	IEA Team:		FME/	A Nr.:	Ver	rsio	n Dat	e:	
Function	Req	uirement	Failu Mod		Failure Effect	Severity	Failure Cause	Prevention Actions	Occurrence	Detection Actions	Detection	RPN	Improveme Actions		Severity	Prevention	Detection	RPN

- Function: What the component must do
- Failure mode: The failure
- Failure effect: Effect of the failure
- **Severity:** Consequences of failure (1-10 scale)
- Failure cause: Caused the failure

- **Prevention controls:** Actions to prevent failure from occurring
- **Occurrence:** How likely the failure is (1-10 scale)
- **Detection controls:** Actions taken to detect failure if it occurs
- **Detection:** How well failure can be detected if it occurs (1-10 scale)

Risk Priority Number (RPN) = Severity x Occurrence x Detection

		Criteria	
Rating	Severity	Occurrence	Detection
	Not noticeable to customer.	Highly unlikely. < 1 in 1.5	Almost certain to detect
1		million opportunities	failure.
	Some customers will notice. Very	Extremely rare. 1 in	Excellent chance of
2	minor effect on product or system.	150,000 opportunities.	detecting failure: 99.99%
	Most customers notice. Minor	Rare. 1 in 15,000	High chance of
3	effect on product or system.	opportunities.	detecting failure: 99.9%
	Customer slightly annoyed.	Few. 1 out of 2,000	Good chance of
	Product or system slightly	opportunities.	detecting failure: 95%
4	impaired.		
	Customer annoyed. Noncritical	Occasional. 1 out of 500	Fair chance of
	aspects of product or system	opportunities.	detecting failure: 80%
5	impaired.		
	Customer experiences discomfort	Often. 1 out of 100	Might detect failure: 50%
	or inconvenience,. Noncritical	opportunities.	
	elements of product or system		
6	inoperable.		
	Customer very dissatisfied.	Frequent. 1 out of 20	Unlikely to detect failure:
	Partial failure of critical system	opportunities.	20%
	elements		
7	of product or system. Other		
	Customer highly dissatisfied.	Repeated. 1 out of 10	Very unlikely to detect failure:
	Product or system inoperable,	opportunities.	10%
8	but safe.		
	Customer safety or regulatory	Common. 1 out of 3	Highly unlikely to detect
	compliance endangered, with	opportunities.	failure: 5%
9	warning.		
	Catastrophic. Customer safety	Almost certain. > 1 out	Nearly certain not to
	or regulatory compliance	of 2 opportunities.	detect failure, or no
10	endangered, without warning.		controls in place.

Reprinted with permission from ASQ © 2005 ASQ, www.asq.org; All rights reserved. No further distribution allowed without permission.

DFMEA Documentation

Compa	any	Name		Design Failure Modes and Effects Analysis													
Part:		FMEA Ty	pe:	Customer:		Part Nu	ımber:	DFN	/IEA Team:		FME/	A Nr.:	Vers	sion	Date	: :	
Function	Req	uirement	Failur Mode		Severity	Failure Cause	Prevention Actions	Occurrence	Detection Actions	Detection	RPN	Improveme Actions	nt	severity	Prevention	Detection	RPN
				I							I						

- Recommended actions: Actions to improve prevention and/or detection
- Responsible & target date: Who will perform the actions & when they will be completed
- Actions taken & completion date: What was done & when finished
- Re-evaluate Severity, Occurrence & Detection
- **Re-calculate Risk Priority Number** (RPN) = Severity x Occurrence x Detection

DFMEA Example – Retaining Clip

Function	Failure Mode	Failure Effect	s	Failure Cause	Prevention Controls	0	Detection Controls	D	RPN
Retaining clip spring must have sufficient tension to hold clip to assembly	Unintended release of spring	Retaining clip falls off	8	Incorrect tension specified on drawing	Use of carryover design	5	Test in spring tension tester	6	240

- Severity: 8 due to total product failure
- Occurrence: 5 due to previous use of similar design
- Detection: 6 due to use of a proven test method with test to failure

WORLD CONFERENCE

ON QUALITY & IMPROVEMENT

S – Severity; O – Occurrence; D – Detection; RPN – Risk Priority Number = S x O x D

DFMEA Example – Retaining Clip

Function	Failure Mode	Failure Effect	s	Failure Cause	Prevention Controls	0	Detection Controls	D	RPN
Retaining clip spring must have sufficient tension to hold clip to assembly	Unintended release of spring	Retaining clip falls off	8	Incorrect tension specified on drawing	Use of carryover design	5	Test in spring tension tester	6	240

- Recommended actions: Implement degradation testing (detection)
- Responsible & target date: Jane S. / 22 July
- Actions taken & completion date: Degradation testing performed on 22 July
- Re-evaluate detection: Degradation testing implemented so rating is now 5
- Re-calculate RPN: 8 x 5 x 5 = 200 (additional actions?)

S – Severity; O – Occurrence; D – Detection; RPN – Risk Priority Number = S x O x D

- Two FMEA standards are now combined
 - AIAG's (Automotive Industry Action Group)
 - VDA's (Verband der Automobilindustrie) – German Association of the Automotive Industry

- Required use of the new standard:
 - Fiat Chrysler Automobiles (FCA)
 - Can be used immediately, but an agreement between supplier and FCA is required
 - Ford
 - Can be used immediately
 - General Motors
 - Implementation anticipated in 2023
 - Honda North America
 - Can be used immediately
 - Anticipated to be in use in 2022 for new parts

AIAG FMEA Handbook

 Required boundary diagrams to identify the limits & interfaces of the system

AIAG FMEA Handbook

• Required p-diagrams (parameter diagrams)

VDA FMEA Handbook

- Required use of a structure tree
 - Software is used to create the structure tree

DFMEAs can be difficult to create

- Failures causes, failure modes, and failure effects are linked between system elements
 - A failure mode at one system element is an effect for a lower system element and the cause of failure for a higher system element

- Failure effect, modes & causes are linked between system elements
 - A failure in one element is an effect for a lower element & the cause for a higher element

- Replaces RPN by an Action Priority (AP)
 - Tables are used to identify the AP on a scale of High (H), Medium (M) & Low (L)
 - Emphasis is given to high severity ratings together with a high occurrence rating
 - Ex.: A severity of 9 and occurrence of 8 is always High regardless of detection

WORLD CONFERENCE

ON QUALITY & IMPROVEMEN

Tables are available in the handbook

 New DFMEA form lists the focus system element & the next higher & lower system element, as well as their functions

Higher level system	System element in	Lower level system	Higher level function	Function and	Lower level function	Potential	Sev.	Potential failure	Potential failure
element	focus	element	and requirement	requirement in focus	and requirement	failure effect(s)		mode(s)	cause(s)
System element 1	System element 2	System element 3	SE 1's function	SE 2's function	SE 3's function	Failure at SE 1 is the effect		Failure at SE 2 is the failure mode	Failure at SE 3 is the failure cause

- Two possible approaches component or function
 - Lowest level uses a function in place of a component when the focus is a component

Assembly as Focus Element	Component as Focus Element
System Element 1: Final product	System Element 1: Final product
Failure effect: Water leak in vehicle	Failure effect: Water leak in vehicle
System Element 2: Assembly	System Element 2: Component
Failure mode: Water pump seal not tight	Failure mode: Coupling not tightly sealed
System Element 3: Component	System Element 3: Component Function
Failure cause: Coupling with wrong tolerance	Failure cause: Wrong tolerance

- Step 1: Planning & Preparation
- Step 2: Structure Analysis
- Step 3: Functional Analysis
- Step 4: Failure Analysis
- Step 5: Risk Analysis
- Step 6: Optimization
- Step 7: Results Documentation

WORLD CONFERENCE

QUALITY & IMPROVEME

Step 1: Planning & Preparation

- Form a DFMEA team (cross-functional)
- Review relevant documents
 - Drawings and specifications
 - Requirements (legal, customer, etc.)
 - Previous, comparable DFMEAs
 - Lessons learned
- Establish project plan & timing
 - Schedule reviews
 - Recommendation: Multiple 2-hour DFMEA sessions

WORLD CONFERENCE

QUALITY & IMPROVEM

Step 1: Planning & Preparation

- Fill out DFMEA header
 - Recommendation: Customize to the organization's needs

	Organization: Quick Molding Inc.	Project: Delux heat transfer manifold	Project owner: Ware	DFMEA number: 46484154581	
DFMEA	Location: Small Town	Product: Heat transfer manifold pipe	Project leader: Duran	Revision date: 1 April 2021	QMI
	Product line: Manifolds	System element: Pipe	Team: Holland, Martinez, Spence	Revision number: 4	

Step 2: Structure Analysis

 Create a structure tree or equivalent (boundary diagram, model, parts)

- Identify interfaces & interactions

Step 2: Structure Analysis

 List the focus element & the next higher & lower elements

Ste	p 2: Structure analys	sis
Higher level system element	System element in focus	Lower level system element
Manifold assembly	Pipe	Inlet

Step 3: Functional Analysis

- Use a function tree or function analysis in DFMEA form together with p-diagram
 - Identify requirements of each function

Step 3: Functional Analysis

 Identify the functions of the three system elements

S	Step 3: Function analysis	
Higher level function and requirement	Function and requirement in focus	Lower level function and requirement
Heat removal	Hot air transfer	Solid seal

Step 3: Functional Analysis

Alternatively, functions can be used if no system elements are available

	Ste	p 2: Structure analys	sis	
	Higher level system element	System element in focus	Lower level system element	
Focus is on the inlet with no lower level system element	Manifold assembly	Inlet	Smooth air flow	Function "smooth air flow" used as a lower level system element
No higher level system element so a function is used	Producibility	Manifold assembly	Inlet cover	Lower level system element is used

Step 4: Failure Analysis

- Identify failure effects, modes & causes
 - Effect relates to the system function
 - Mode pertains to hot air transfer
 - Cause relates to sealing

Step 4: Failure analysis						
Potential failure effect(s)	Sev.	Potential failure mode(s)	Potential failure cause(s)			
Heat buildup -> partial loss of functionality	7	Reduced heat transfer	Inlet diameter too small			

Step 5: Risk Analysis

Identify & evaluate current prevention & detection actions

Step 5: Risk Analysis						
Current prevention actions	Ocur.	Current detection actions	Det.	AP		
Use inlet diameter from previous design for new application	6	Heat transfer test Nr. 4896	6	Н		

Step 6: Optimization

 Identify improvements & assign responsibility for improvement actions

			Step 6: Op	timization					
Planned improvement actions	Responsible	Due date	Status	Implemented improvement actions	Completion date	Sev.	Occur.	Det.	AP
P: Check heat transfer rates per supplier's documents	C. Spence	6 Jan. 20	Done	P: Supplier documents checked	5 Jan. 20	7	3	6	Μ

Step 7: Results Documentation

- A company specific document should be created to communicate risk:
 - Purpose & scope of the DFMEA
 - Timing & team members
 - An explanation of how functions were identified
 - A summary of high-risk failures together with actions taken to address them
 - Timing for continuing actions
 - Commitment to review & update the DFMEA during mass production & when failures occur

WORLD CONFERENCE

ON QUALITY & IMPROVEMENT

 All three components of the assembly are shown in a boundary diagram

 p-diagram shows possible influences on tie clip

• Structure analysis:

Step 2: Structure analysis					
Higher level system element	System element in focus	Lower level system element			
Top component	Spring	Bottom component			

• Functional analysis:

Step 3: Function analysis				
Higher level function and requirement	Function and requirement in focus	Lower level function and requirement		
Grip tie	Hold tie to shirt	Grip shirt		

• Failure analysis:

Step 4: Failure analysis						
Potential failure effect(s)	Sev.	Potential failure mode(s)	Potential failure cause(s)			
Tie falls off	8	Clip not tight enough	Insiffcent spring tension			
Difficult to remove	7	Clip too tight	Too much spring tension			
Difficult to remove	7	Slippery surface	Insufficient surface roughness			

• Risk analysis:

Step 5: Risk Analysis						
Current prevention actions	Ocur.	Current detection actions	Det.	AP		
Use spring per company spring standard	4	Spring tension test	3	М		
Use spring per company spring standard	4	Spring tension test	3	М		
Use hammered surface	2	Operation trials	2	L		

Key Take-aways

- New AIAG/VDA FMEA Handbook helps identify potential failures early in the design process
 - Boundary diagrams help identify system interactions with other components
 - P-diagrams help identify influences, functions & failures
 - Tree structure links causes, failures & effects though the assembly or system

WORLD CONFERENCE

ON QUALITY & IMPROVEMEN

Summary

- In this session you should have learned about:
 - Changes implemented in the new FMEA Handbook
 - How to list the steps for creating a DFMEA
 - How to evaluate risks based on Action Priority

References

- AIAG/VDA. 2019. *Failure Modes and Effects Analysis Handbook*. 1st ed.
- AIAG. 2019. "AIAG Announces OEM Deployment Plan for New AIAG & VDA Handbook." Retrieved 9 December 2019 from https://blog.aiag.org
- AIAG. 2008. *Potential Failure Modes and Effects: Reference Manual.* 4th ed.
- Opie, Iona and Opie, Peter. ed. Oxford Dictionary of Nursery Rhymes. Oxford, 1951, 324. Quoted in Lowe, E.J. "For Want of a Nail." Analysis 40 (January 1980), 50-52. http://www.jstor.org/stable/3327327
- Tague, Nancy R. 2005. The Quality Toolbox (2nd ed.). Milwaukee, WI: The ASQ Quality Press.
- VDA. 2003. Qualitätsmanagement in der Automobilindustrie: Sicherung der Qualität während der Produktrealisierung Methoden und Verfahren – System FMEA.

Questions?

