

Paynter Charts: A Form of Predictive Warranty Analysis By Jd Marhevko

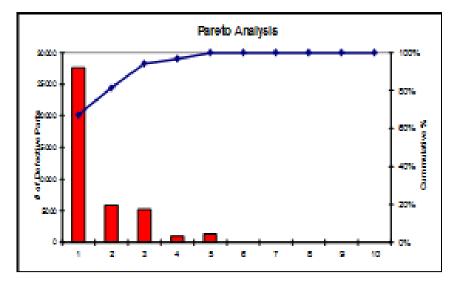
VP Quality ZF Division U, Electronics & ADAS WiM HoF, ASQ Shainin Medalist, Fellow, CMQ/OE, CQE, CSSBB, MBB, STEP Ahead Awardee, Past-Chair ASQ QMD

ASQ General Presentation

Learning Objectives

In the next 60 minutes we will...

- Learn about what a Paynter Chart is and...
- Understand how it is tied to Time of Manufacture (TOM)
- Construct an example and apply the tool
- Review the Power of the Paynter via risk mitigation
- and...Apply it to Predictive Warranty analysis


Assumptions...

- We know what a Pareto Chart is
- We know what the concept of Chi² is

WHAT YOU SHOULD WALK AWAY WITH ...

Assumptions...Pareto & Chi² (χ^2)

Pareto is a bar graph that sorts information in a high to low order. Often called the 80:20 Rule or "worst first"

QUICK CONCEPTS

Chi² (χ^2) is a quick analysis to determine if there is a difference or not between two populations. (χ^2 tool below is issued

to ASQ Statistics Division Members

							/					
Catagories	Time 1	Time 2							Total			
Good	125	142							267			
Scrap	4	7							11			
Total	129	149							278			
	Summa	ary Result	ts	Time	1	Time	e 2					
	Good	Observe	d	125		14	2					
	Good	Expecte	ed	123.8957 1		143.1043						
	Scrap	Observe		4		7						
	Scrap	Expecte	ed	5.104317 5.8			683					
		Calculat	ed	Value	9							
	Numb	er of Row		Variation	<u> </u>	2						
						2						
		er of Colu				2						
		Degrees of Freedom 1										
	Chi S	Chi Square 0.464132										
	P Val	ue			0.4	957						
	Confid	lence			0.5	043						
			_									

It is unlikely there is a difference between categories

Define: What's a Paynter?

Developed in the early 1980's by Marvin (Marv) Paynter at Ford Motor Company, a Paynter chart is a graphical tool often used to analyze product failure

 Most critically, Paynter charts rely on TOM; the Time Of Manufacture...ie. By month or week

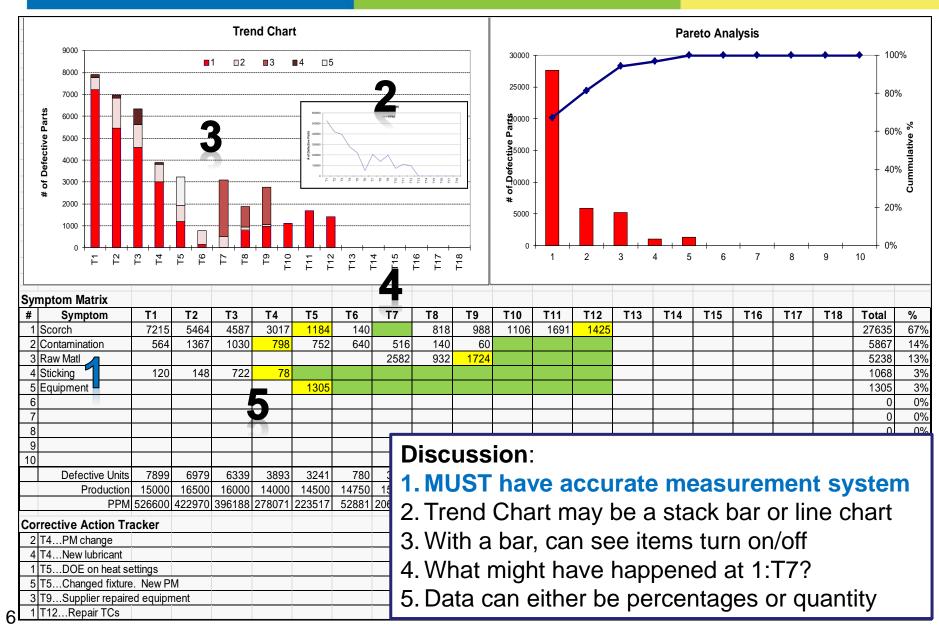
- Resulting graphics are often a Matrix of Failures or Stack-Bar Charts; both run over time. Data is usually expressed in percentage or Parts Per Million (PPM)
- Paynters are generally used in tandem with Pareto charts
- Paynters help to verify the effectiveness of Corrective Actions (C/A) over time AND can mitigate business risk

VERIFIES EFFECTIVE C/A OVER TIME

Define: Matrix-Type Paynter

Paynter variations have multiplied across the past 30 years. However, there are two main types:

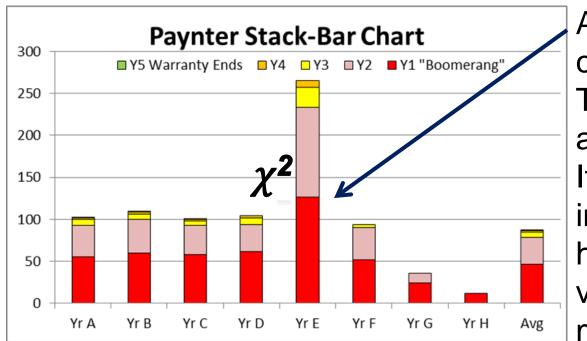
Matrix Charts "bucket" the failure data by TOM and by type. These charts usually use a Pareto and trend chart. They are often color coded for C/A, spikes and downward trends


Concern	Total	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Scorch	27,635	48%	33%	29%	22%	8%	1%	0%	6%	7%	7%	11%	10%
Contamination	5,867	4%	8%	6%	6%	5%	4%	3%	1%	0%	0%	0%	0%
Raw Material	5,238	0%	0%	0%	0%	0%	0%	17%	7%	12%	0%	0%	0%
Sticking	1,068	1%	1%	5%	1%	0%	0%	0%	0%	0%	0%	0%	0%
Equipment	1,305	0%	0%	0%	0%	<mark>9%</mark>	0%	0%	0%	0%	0%	0%	0%
TOTAL MFG'd		15,000	16,500	16,000	14,000	14,500	14,750	15,000	13,600	14,000	15,000	15,000	14,500
TOTAL DEFEC	TS to date	7,899	6,979	6,339	3,893	3,241	780	3,098	1,890	2,772	1,106	1,691	1,425
TOTAL %DEFECT		53%	42%	40%	28%	22%	5%	21%	14%	20%	7%	11%	10%

C/A is implemented

COLOR CODE TO SEE EFFECT OF C/A

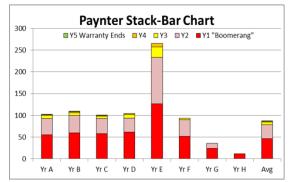
Define: Matrix-Type Paynter

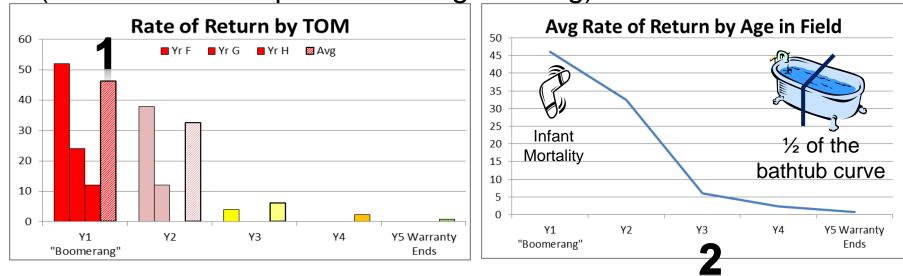


Define: Stack-Bar Paynter

Stack-Bar Charts show return data "bucketed" by TOM when items are received. Extensive Pareto work is typically conducted behind the scenes

TOM is the Key!


A change in supplier caused this effect... The penny saved cost a bundle...for years! If a Paynter had been in use, the issue may have been identified via χ^2 within a few months of release


APPLY ALL BETURNS TO TOM; QUICKLY!

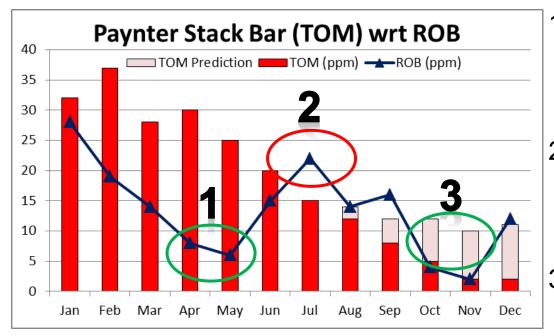
Define: Stack-Bar Paynter

- 1. Once developed, use the average stackbar to identify changes in return rates
- 2. The average of each return window can be used to create an "empirical" bathtub curve (can then be compared to design testing)

USE χ^2 TO TRIGGER C/A ANALYSIS

Measure: Why TOM vs ROB?

Time Of Manufacture (**TOM**) is used to manage business risk. Tracking by the day it **R**eturns to **Our B**ackyard (**ROB**) does not enable predictive nor preventive planning


ТОМ	ROB
 Can use "iterative" Chi-Square analysis to predictively check for difference in rate of returns Can make a decision on how far into the value stream you need to go to contain an identified issue Can more effectively plan for reserves and/or margin impact Able to quickly see impact of C/A from future returns 	 "Return" pattern holds no meaning causing inconsistent over and under reaction to "results" May be inversely tied to sales volume: Smaller percent of return with recent high sales. Larger percent of return with recent low sales

FOCUS ON PREDICTIVE CONTROL

Measure: ROB Reactiveness

Traditional financial accounting compares the return data to sales (**ROB**). The "incoming" goods does not reflect either the quality nor financial risk inherent in the "outgoing" goods

 Ops looks like a hero because prior low sales volume reduced the ROB return rate "x" months later
 Ops is struggling to explain why the ppm went up when, in fact, the process is the best it has ever been
 Prediction data is based on

past return performance

TOM RATA HELPS WITH FUTURE VISIBILITY

Session Worksheet

Age	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	%Ret
Mo 1	Jan 10	Feb 20	Mar 30	Apr 20	May 10	Jun 2				5.8%
Mo 2	Feb 10	Mar 20	Apr 30	May 10	Jun 10					5.0%
Mo 3	Mar 5	Apr 10	May 15	Jun 5						2.2%
Mo 4	Apr 5	May 10	Jun 15							1.9%
Mo 5	May 3	Jun 6								0.6%
Mo 6	Jun 2									0.1%
Cum	35	66	90	35	20	2	0	0	0	248
Mfg	100	200	300	400	500	100				1600
YTD %	35%	33%	30%	9%	4%	2%				15.5%
Apr	C/A #1	implen	nented.	Redu	ce infan	t mort	ality (boo	merang)	failures	
May	C/A #2	implen	nented.	Redu	ce prem	nature	product fa	atique fail	ures	

F	Returned	ir	n the month	ו of	
TOM	Jul		Aug	Sep	
Sep				Mo 1 3	3
Aug			Mo 1 2	Mo 2 1	1
Jul	Mo 1	2	Mo 2 2	Mo 3 1	1
Jun	Mo 2		Mo 3	Mo 4	
May	Mo 3	2	Mo 4 1	Mo 5 2	2
Apr	Mo 4		Mo 5 1	Mo 6	
Mar	Mo 5	4	Mo 6 1		
Feb	Mo 6	2			
Total	1	0	7	7	7

Mfg Qtys: Jul: 200, Aug: 300, Sep: 400

- 1. Take the returns information above and calculate TOM%
- 2. Review the rates vs the C/As implemented
- Calculate the last 3 mos of the %Return rate

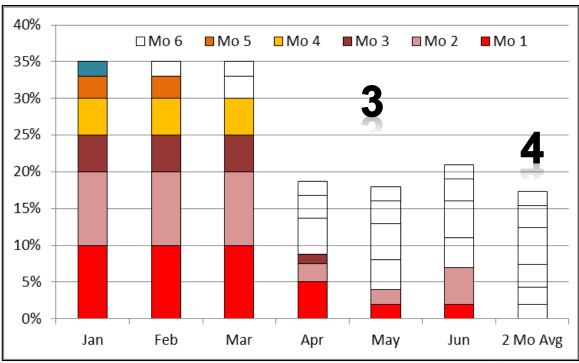
Session Worksheet

Age	Jan	Feb	Mar	Apr	May	Jun	Ju	Aug	Sep	%Ret
Mo 1	Jan 10	Feb 20	Mar 30	Apr 20	May 10	Jun 2	Jul 2	Aug 2	Sep 3	5.8%
	10%	10%	10%	5%	2%	2%	1%	0.7%	0.8%	0.8%

F	Returned	ir	the mont	h of	Γ
ТОМ	Jul		Aug	Sep	Γ
Sep				Mo 1	3
Aug			Mo 1 2	Mo 2	1
Jul	Mo 1	2	Mo 2 2	Mo 3	1
Jun	Mo 2		Mo 3	Mo 4	
May	Mo 3	2	Mo 4 1	Mo 5	2
Apr	Mo 4		Mo 5 1	Mo 6	
Mar	Mo 5	4	Mo 6 1		
Feb	Mo 6	2			
Total	1	0	7		7

Mfg Qtys: Jul: 200, Aug: 300, Sep: 400

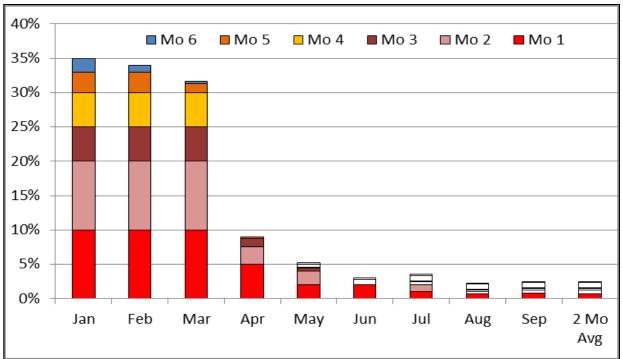
- Take the return information from each month and "allocate" it into the TOM
- Evaluate if the return rates "hold up" based on the C/As implemented

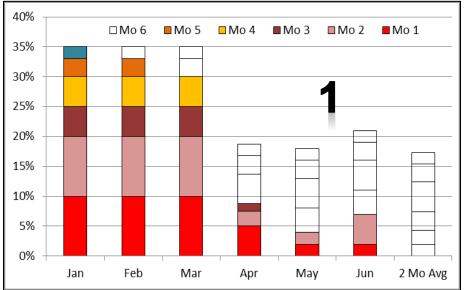

									400	1600				
YTD %	35%	33%	30%	9%	4%	2%	0.04%	0.01%	0.01%	15.5%				
Apr	C/A #1	C/A #1 implemented. Reduce infant mortality (boomerang) failures												
May	C/A #2	C/A #2 implemented. Reduce premature product fatique failures												

Analyze: Stack-Bar Before

Age	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	%Ret
Mo 1	Jan 10	Feb 20	Mar 30	Apr 20	мау 10	Jun 2				5.8%
Mo 2	Feb 10	Mar 20	Apr 30	May 10	Jun 10					5.0%
Mo 3	Mar 5	Apr 10	мау 15	Jun 5						2.2%
Mo 4	Apr 5	May 10	Jun 15							1.9%
Mo 5	May 3	Jun 6								0.6%
Mo 6	Jun 2									0.1%
Cum	35	66	90	35	20	2	0	0	0	248
Mfg	100	200	300	400	500	100				1600
YTD %	35%	33%	30%	9%	4%	2%				15.5%

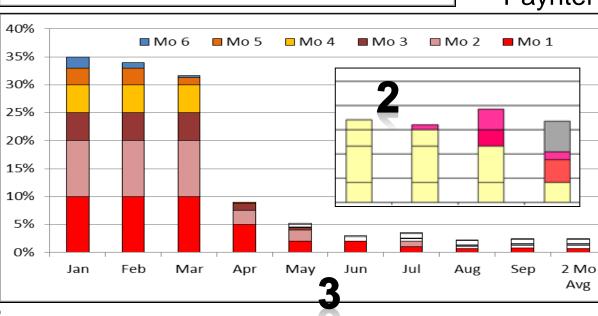
- 1. Establish a percent and/or ppm table
- Determine an approximate and meaningful "historical" average (ie. Most recent 2 mos)
- Create the stack-bar with "ghost bars" to estimate potential future returns
- 4. Is this the desired level?


		l	Percent Ret	urn Rate by	ТОМ		-
	Jan	Feb	Mar	Apr	May	Jun	2 Mo Avg
Mo 1	10%	10%	10%	5%	2%	2%	2%
Mo 2	10%	10%	10%	3%	2%		2%
Mo 3	5%	5%	5%	1%			3%
Mo 4	5%	5%	5%				5%
Mo 5	3%	3%					3%
Mo 6	2%						2%


Analyze: Stack-Bar...3 Mos Later

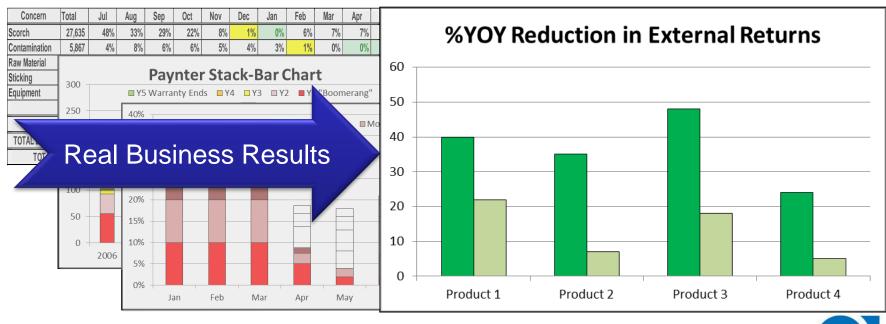
Age Mo 1	Jan 10				May 10	-	Jul 2	Aug 2	Sep 3	%Ret 4.0%	1	Percent Return Rate by TOM									
Mo 2	10	20	30	10	10		2	1	P	3.3%		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	2 Mo Avg
Mo 3	5	10	15	5	2		1			1.5%	Mo 1	10%	10%	10%	5%	2%	2%	1%	1%	1%	1%
Mo 4	5	10	15		1	Þ			\square	1.2%	Mo 2	10%	10%	10%	3%	2%	0%	1%	0%	,	1%
Mo 5	3	6	4	1	2					0.6%	Mo 3	5%	5%	5%	1%	0%	0%	1%	5		0%
Mo 6	2	2	1						\square'	0.2%	Mo 4	5%	5%	5%	0%	0%	0%				0%
Cum	35		_		-	_	5	3	3	272		3%	3%	1%	0%	0%					1%
Mfg YTD %			_		-	100 2%			400 5 1%	2500 10.9%	Mo 6	2%	1%	0%	0%						0%

- 1. Note the dramatic expected reduction in "future" returns
- 2. Based on χ^2 analysis, just a few units can trigger an alert for corrective action review and/or containment
- 3. Are the CA/PAs working?


Analyze: Side by Side

- 1. "Ghost" bars help to visualize potential risk. They help to see the future cost/business risk *potential*
- 2. "Ghost" bars can be used for previous timing when you are "starting a Paynter in the middle"
- Return data needs to be analyzed and "bucketed" quickly to get Paynter cost benefits by

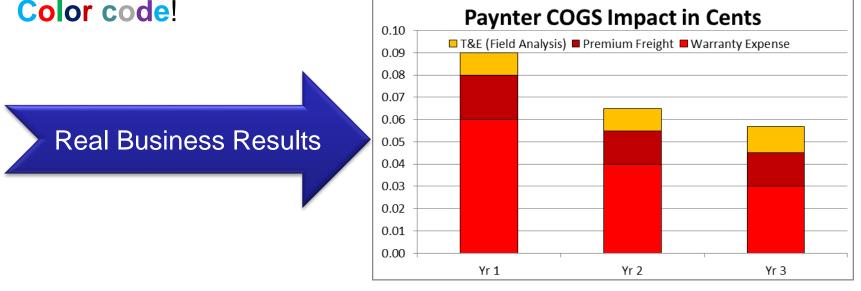
"pre-sponding" to an issue; or to share improvement results


As effective CA/PA is taken at the front end (DFM/DFSS/DFA) external results are impacted

Improve: Paynters with a Purpose

Use the Paynters to proactively

- Identify if C/A is effective
- Plan for business risk/reserves
- Build empirical results to improve design testing processes



USUALLY HIGH IMPACT IN YB 1 & YB 2

Control

Paynter Pointers...

- Use Paynters for verification, containment on your terms (mitigate cost) and to understand product performance
- Once you have a working data system...<u>automate it</u>
- Paynters require thought; Use χ^2 to assess for change
- Ensure system fixes are sustainable; or they'll show up again
- Tie results to Cost of Goods Sold (COGS)
- Color code!

REDUCTION IN WARRANTY E

Learning Objectives

In this time we have...

- Learned about what a Paynter Chart is and...
- Determined how it is tied to Time of Manufacture
- Constructed an example and applied the tool
- Reviewed the Power of the Paynter's ability to mitigate business risk
- and...We applied it to Predictive Warranty analysis

WHEN WE DO, WE UNDERSTAND ...

Questions?

<u>Jd.Marhevko@Frontier.Com</u> +01.419.704.5603

