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Message from the Chair
Amy Ruiz

It goes without saying that this year has had its fair share of unprecedented hardships and 
challenges. But as with any tribulation, there are lessons to be learned, opportunities to 
seize, and growth to achieve. It seems we are beginning to see the light shining at the 
end of the tunnel and we are confident that we will come out better on the other side.

With that said, the Stat Division has faced our own series of obstacles this year, 
but we are looking for opportunities in spite of these challenges. While WCQI was 
cancelled, a virtual ‘conference’ was held and was a success with over 7,453 ASQ 
members registered and 597 non-members registered. 4,465 members participated 
and the overall satisfaction rating (4s and 5s) was 82%. While FTC is cancelled for 
2020, we can use the extra time this year to plan 2021 meetings and conferences and 
aim at making FTC 2021 the best one yet! The ASQ Canada Conference, which was 
set for October 19–20 this year will be cancelled as well, but there may be a virtual 
conference held with various speakers over a span of a few days. Be sure to check our 
website (links below) for additional details.

Additionally, we have had great success with our webinars this year. In January, Norma 
Antunano presented a Spanish webinar on ‘Comparing Methods to Represent and 
Analyze Data’ and in March, Daksha Chokshi presented a webinar titled ‘Statistical  
Process Control: Myths, Misconceptions and Applications’ to a virtual audience of 313. 
We have a few other exciting webinars planned this year so stay tuned!

I would like to extend my sincerest thank you to all of our members and well as our 
entire leadership team for not just `hanging in there’, but for going the extra mile to 
ensure an innovative and productive year in spite of the many 2020 hurdles. Our 
leadership volunteers truly are the backbone of the Statistics Division and I am very 
grateful to each of them for their hard work and dedication.

Also, if you have not done so already, be sure to join myASQ and follow the myASQ 
Statistics Division Community at https://my​.asq​.org​/communities​/home​/177. As a 
valued member of our online community, you will have access to many benefits and 
resources including:

•	 Events including Division conferences, Webinars, and related information at 
https://my​.asq​.org​/communities​/events​/177

•	 Technical resources including the Statistics Digest, YouTube channel video series, 
and more at https://my​.asq​.org​/communities​/reviews​/177

Continued on page 3
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Disclaimer
The technical content of material published 
in the ASQ Statistics Division Newsletter 
may not have been refereed to the same extent 
as the rigorous refereeing that is undergone 
for publication in Technometrics or J.Q.T. 
The objective of this newsletter is to be 
a forum for new ideas and to be open to 
differing points of view. The editor will strive 
to review all articles and to ask other statistics 
professionals to provide reviews of all content 
of this newsletter. We encourage readers with 
differing points of view to write to the editor 
and an opportunity to present their views via 
a letter to the editor. The views expressed in 
material published in this newsletter represents 
the views of the author of the material, and 
may or may not represent the official views of 
the Statistics Division of ASQ.

Submission Guidelines
Mini-Paper
Interesting topics pertaining to the field of 
statistics; should be understandable by non-
statisticians with some statistical knowledge. 
Length: 1,500-4,000 words.

Feature
Focus should be on a statistical concept; can 
either be of a practical nature or a topic that 
would be of interest to practitioners who 
apply statistics. Length: 1,000-3,000 words.

General Information
Authors should have a conceptual 
understanding of the topic and should be 
willing to answer questions relating to the 
article through the newsletter. Authors do 
not have to be members of the Statistics 
Division. Submissions may be made at any 
time to newsletter@asqstatdiv.org.

All articles will be reviewed. The editor 
reserves discretionary right in determination 
of which articles are published. Submissions 
should not be overly controversial. 
Confirmation of receipt will be provided 
within one week of receipt of the email. 
Authors will receive feedback within two 
months. Acceptance of articles does not 
imply any agreement that a given article will 
be published.

The Statistics Division was formed in 1979 and today it consists of both statisticians and 
others who practice statistics as part of their profession. The division has a rich history, 
with many thought leaders in the field contributing their time to develop materials, serve  
as members of the leadership council, or both. Would you like to be a part of the 
Statistics Divisions’ continuing history? Feel free to contact chair @asqstatdiv.org for 
information or to see what opportunities are available. No statistical knowledge is required, 
but a passion for statistics is expected.

Vision
The ASQ Statistics Division promotes innovation and excellence in the application and 
evolution of statistics to improve quality and performance.

Mission
The ASQ Statistics Division supports members in fulfilling their professional needs and 
aspirations in the application of statistics and development of techniques to improve 
quality and performance.

Strategies
1.	 Address core educational needs of members

•	 Assess member needs
•	 Develop a “base-level 

knowledge of statistics” 
curriculum

•	 Promote statistical engineering
•	 Publish featured articles, special 

publications, and webinars

2.	 Build community and increase awareness by using diverse and effective 
communications

•	 Webinars
•	 Newsletters
•	 Body of Knowledge
•	 Web site
•	 Blog
•	 Social Media (LinkedIn)

•	 Conference presentations  
(Fall Technical Conference, 
WCQI, etc.)

•	 Short courses
•	 Mailings

3.	 Foster leadership opportunities throughout our membership and recognize leaders

•	 Advertise leadership 
opportunities/positions

•	 Invitations to participate in 
upcoming activities

•	 Student grants and scholarships

•	 Awards (e.g. Youden, Nelson, 
Hunter, and Bisgaard)

•	 Recruit, retain and advance 
members (e.g., Senior and 
Fellow status)

4.	 Establish and Leverage Alliances

•	 ASQ Sections and  
other Divisions

•	 Non-ASQ (e.g. ASA)
•	 CQE Certification

•	 Standards
•	 Outreach  

(professional and social)

 
Updated October 19, 2013
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Message From the Chair Continued

•	 Opportunities to learn and contribute by joining a Discussion Group or Interest Group at https://my​.asq​.org​
/communities​/discuss​/177​/323

•	 Much, much more!

Looking ahead to 2021, we are doing some preliminary planning for these events (so mark your calendars!):

•	 World Conference on Quality & Improvement WCQI 2021—Anaheim, California from May 23–26. 
Visit wcqi​.asq​.org for more information. At the conference, please stop by the Statistics Division booth at the 
Expo to see us!

•	 ASQ/ASA Fall Technical Conference (FTC) 2021—Park City, Utah where we will offer short courses and 
conference sessions from October 13–15. When released, additional details will be at falltechnicalconference​
.org. Award winners for both 2020 and 2021 will be recognized.

Are you interested in playing a more active role in the Statistics Division? If so, contact chair@asqstatdiv​.org. We are 
always looking for new volunteers who can help the division continue to grow. I look forward to meeting and working 
with many of you throughout the remainder of this year and into the next. As we continue pressing on, we will be 
stronger, wiser, and more equip in the end. Cheers!

Editor’s Corner
Harish Jose

Welcome to the second edition of ASQ Statistical Digest in 2020.

These are truly unprecedented times as we face a pandemic together. In fact, the term “unpre
cedented” hit its highest peak on Google Trends worldwide in April 2020. We want to thank all 
essential people working on the frontlines fighting this virus and working to keep us safe. Thank you!

We have another great edition this time including a timely article from Dr. Wheeler on Covid-19 
data analysis. We have:

•	 Youden Address by James J. Filliben - The Role of DEX & EDA for Standards & the Role of 
Standards for DEX & EDA Part 2

•	 Statistical Process Control Column by Donald J. Wheeler - Covid-19 Data and Process  
Behavior Charts

•	 Hypothesis Testing Column by Jim Frost - Understanding Significance Levels
•	 Risk and Uncertainty Column by Stephen Luko—Interval Estimation
•	 Mini Paper by Melvin Alexander - Statistical Model Comparison Predicting Signs of 

Penetrating Abdominal and Pelvic Injuries using R
•	 Upcoming Conference Calendar
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Youden Address: The Role of DEX 
& EDA for Standards & the Role  
of Standards for DEX & EDA 
Part 2
James J. Filliben., National Institute of Standards and Technology.

Introduction
Part 1 of this Youden story appeared in the February 2020 edition of the ASQ Statistics Digest (Vol. 39, No. 1, 
p​. 5​-19​.)​-https://my​.asq​.org​/communities​/files​/177​/5133​. It focused on “The Youden Years” and provided 
historical insight into Jack Youden’s career (pre-NBS and NBS), and showed how critical he was for the early 
growth of the statistical consulting group (SEL) at NBS/NIST. Youden’s NBS career was a manifestation of how 
DEX (Design of Experiments) and EDA (Exploratory Data Analysis) could impact not only standards, but also 
science, engineering and industry. Youden set inspirationally high standards for the art and craft of statistical 
consulting, methodology development, and communication that carry on even to today.

Part 1 had 6 sections:

1.	 Youden: His Contributions, and JJF Personal Recollections

This introduced Youden as the master consultant, experiment designer, data analyst, writer, and orator; 
as well as my early recollections of Youden as a then (1969) mostly-retired colleague.

2:	 The R. A. Fisher, NBS/SEL, & Jack Youden Connection: Historical Insights

This discussed the common thread that R.A. Fisher’s classic text “Statistical Methods for Research 
Workers” played in connection with the 1947 founding of SEL, the choice of SEL’s first division chief 
(Churchill Eisenhart), and the choice of Jack Youden as an early SEL hire.

3:	 Youden Contributions at NBS

This discussed Youden’s experimental prowess, his love of applications and problem-solving, his prolific 
methodology contributions, and his masterful written and oral presentations.

4:	 Youden, NBS, & an Institutional Pivot Point: AD-X2

This discussed Youden’s expert response to the institutional challenge presented by the 1953 AD-X2 event, 
which was an existential threat to NBS as an independent scientific research laboratory. It also established

SEL as a critically important component in NBS’s mission of standards development and research.

5:	 Youden Chronology

This outlined Youden’s incredibly productive career from his early pre-NBS days as a research chemist, 
to his Fisher/Hotelling-led transformation into a statistical scientist, to his flourishing NBS days as 
experiment design expert, data analysis expert, master consultant and world-
class communicator.
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6:	 Youden: the Author & Communicator

	 This described Youden’s productivity as an author: 114 publications (including 5 books) overall, across 
a variety of disciplinary platforms, and highlighted an incredibly productive NBS stretch 1959–1963 in 
which he had 41 publications (93% solo-authored!). Further it was noted that career-wise, Youden had 
200+ lectures-universally characterized as clear, jargon-free and effective-which led to him being heavily 
in demand and acclaimed as a master oral communicator.

Part 2 (The “Post-Youden Years”) here describes Youden’s legacy and impact in the 5 decades since his death 
in the early 1970’s. It covers specifics about the institutional evolution of the NBS Statistical Engineering 
Laboratory post-Youden, as well as methodological developments/ standardizations that (we contend) would 
hopefully find Youden’s posthumous approval. Further, whereas Part 1 discussed Youden’s life in the context 
of DEX & EDA for Standards, Part 2 discusses Youden’s legacy in the context of Standards for DEX & EDA. In 
particular, Part 2 has 2 sections:

1.	 Post-Youden: NBS/SEL

This summarizes the ongoing Youden effect/legacy on SEL over the past 5 decades. It enumerates 
SEL ASQ Youden Award Winners (4), ASA Youden Award winners (10), high profile SEL projects, SEL 
software, and SEL DEX workshops (24) (along with an associated standardized DEX teaching tool for 
2-level design construction and confounding).

2.	 Post-Youden: Standardized DEX/EDA Tools: 4 Recommendations

Inspired by Jack Youden (and John Tukey), this enumerates “standards” in DEX and EDA methodologies, 
and make 4 specific recommendations (one recommendation for each of 4 problem type) for such 
standards. We assert that just as standards in scientific research maximize accuracy; standards in DEX/
EDA construction maximize insight.

1: Post-Youden: NBS/SEL
It was seen in Part 1 that with the fortuitous R.A. Fisher-based trifecta of:

1.	 the fourth NBS Director Edward Condon,

2.	 the first Chief of the NBS Statistical Engineering Laboratory Churchill Eisenhart,

3.	 and the energetic and talented chemist-turned statistician Jack Youden

was critical to the establishment and growth of the Statistical Engineering Laboratory (SEL) within NBS. Here 
in Part 2, we provide a summary as to how the 50 post-Youden years have seen a continuation of the Youden 
spirit and a growth of NBS/SEL-even among changing standards demands, changing scientific problem 
arenas, and changing metrology tools in the hands of the NBS scientist. In contrast to the 5 members of SEL 
when Youden first joined in 1948, SEL currently has about 30 staff members-shared between the Gaithersburg 
MD campus (~3500) and the Boulder, CO campus (~600). The post-Youden SEL remains highly-respected and 
in 2022 will celebrate its 75th year as the statistical design and analysis consulting group here at NBS/NIST. 
We share here a few selected and abbreviated items about SEL in the post-Youden era-as a reaffirmation that 
the Youden legacy carries on in SEL and NIST in honor of the highest of professional standards that Youden 
has set for us all.

1.1: SEL Staff, Awards & Projects
SEL Division Chiefs: To date, SEL has had 13 chiefs. Many names are familiar and 
have had outstanding statistical careers both within NBS & SEL, and also outside of 
NBS & SEL:
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Churchill Eisenhart (1947–1963); Joe Cameron(63–68); Joan Rosenblatt (68–78); Harry Ku (78–85); Mary 
Natrella (85–86) ; Bob Lundegard (86–94); Carroll Croarkin (acting) (94–95); Lynne Hare (95–96); Carroll 
Croarkin (96–97); Keith Eberhart (acting) (97–98); Keith Eberhart (98–99); Barbara Guttman (99–00); Nell 
Sedransk (2000–2005); Kamie Roberts (05–06); Antonio Possolo(06–13); Will Guthrie (13-present).

ASQ Youden Award Winners: Since 1973, the ASQ/ASA has hosted the Youden Address at the Fall 
Technical Conference. 4 members of SEL (or pre-SEL, or post-SEL) have been given the honor to present this 
address:

Churchill Eisenhart (1975); Brian Joiner (1978); Brian Joiner (1984); Lynne Hare (1993); Jim Filliben (2019).

ASA Youden Award Winners Since 1985, the American Statistical Association has annually presented 
the W. J. Youden Award in Interlab Testing for best paper in that area. Because interlab experimentation is 
a common problem arena at NBS, NBS/SEL has had many interlab articles over the years-10 of which have 
resulted in Youden Awards. SEL (or ex-SEL, or NBS/non-SEL) awardees include:

John Mandel (non-SEL, but still NBS) (1988); Cliff Spiegelman (post-NBS) (1991); John Mandel (non-SEL, 
but NBS) (1996); Andrew Rukhin #1 & Mark Vangel (1998); David Duewer, Margaret Kline, Katherine 
Sharpless, & Jeanice M. Brown Thomas (non-SEL, but still NBS ) (2000); Jim Filliben (2003); Hari Iyer, 
Jack Wang, and Thomas Mathew (2005); Andrew Rukhin #2 with Bill Strawderman (2008); Blaza Toman 
(2009); Andrew Rukhin #3 (2018).

Visiting Staff

Churchill Eisenhart set the early tone for SEL research by assuring that many high-quality visitors would come 
through NBS/SEL. Post-Youden, SEL carried on this tradition of accomplished sabbatical visitors. Here is an 
abbreviated list:

1970s: Ray Sansing, John LeBrecque, Wes Nicholson, John Orban, Richard Jones, Jerry Sacks.

1980s: Karen Kafadar, John Rice, Ray Carroll, Jim Crichton, Dave Herbert, Nancy Flournoy, Sam 
Saunders, Ken Wallenius, Jim Williams, Stephen Sanulus, Leon Gleser, and Bobby Mee.

1990s: Wayne Nelson, Necip Doganasksoy, Mike Frey, Janos Galambos, Ker-Chau Lee, Sabri Cetikunt, 
Thad Tarpey, Moshe Pollack, Doug Simpson, Ali Cinar, Gene Hwang, Ghanashyam Joshi, Duane Boes, 
Jauarum Sethuraman, Yidaya Sivthanu, Nozer Singpurwalla. Bob Easterling.

Post-Youden SEL staff members who have contributed much to NBS and have then gone on to apply their 
experience and expertise at other institutions would include (for example): Cliff Spiegelman, Charlie Reeve, Grace 
Yang, Lisa Gill, Eric Lagergren, Keith Eberhart, Lynne Hare, Mark Levinson, Mark Vangel, and David Banks.

High-Visibility Projects: NBS/SEL/Gaithersburg has about 25 statisticians + our Boulder branch has about 
5 statisticians. On a yearly basis, an SEL statistician will be involved in anywhere from as few as 6 to as many 
as 40 projects-some long term and many short term. A selective sample of 15 high-visibility projects since SEL’s 
inception includes:

AD-X2, Selective Service Draft Lottery, Daylight Saving Time, Alaska Pipeline, Bullet-Proof Armor Testing, World 
Trade Center Collapse, DHS Radiation Detection, Video Analytics, NIST mAB Monoclonal Antibodies SRM 
8671, Newton’s Gravitational Constant G, Cell Biometrology, Net-Zero House Energy Consumption, and Cloud 
Computing Resource Allocation, and Gulf of Mexico Deepwater Horizon Oil Disaster.
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1.2: Publications
In the spirit of Youden to produce relevant publications which address real-world metrology problems with 
rigorous, state-of-the-art methodologies, SEL staff have produced thousands of publications over the 5 
decades-across a myriad of interdisciplinary journals. As for books, Youden had 5 [1951], [1960], [1962], 
[1967], [1974]. Post-Youden, there have been a number of noteworthy NBS/SEL books which (we contend) 
Youden himself would have been particularly “proud of”; here are 3:

NBS Handbook 91: Experimental Statistics) [Natrella, 1963]

Though not strictly speaking “post-Youden”, it was published within a few years of Youden’s formal 
retirement. This book by Mary Natrella (a long-standing colleague of Jack Youden) was very clearly 
written, very practical, and very highly regarded by the scientific and engineering community. It was the 2nd 
most published book ever at NBS and has been translated into 6 languages.

NBS Special Publication 300: Precision Measurement and Calibration-Statistical Concepts 
and Procedures [Ku, 1969] https://nvlpubs​.nist​.gov​/nistpubs​/Legacy​/SP​/nbsspecialpublication300v1​.pdf

This book by Harry Ku-also a long-standing colleague of Jack Youden-was/is an excellent collection of 
state-of-the-art statistical metrology methods. SP300 is unique in its collection and rigorous discussion of a 
wide range of fundamental metrology topics.

NIST/SEMATECH e-Handbook of Statistical Methods [Croarkin et al, 2003]

This 3000-page electronic document-authored by colleague Carrol Croarkin, 4 NIST SEL staff members, 
and 4 SEMATECH (the Semiconductor manufacturing consortium) staff members-is a 6-year joint effort of 
SEMATECH and NIST. It was first released in 2003. It was inspired and viewed as a modern update to 
Mary Natrella’s NBS Handbook 91: Experimental Statistics. Both the Natrella book and the subsequent 
e-Handbook are characterized by:

•	 presenting real-world metrology problems,
•	 describing in detail state-of-the-art stat/EDA solutions,
•	 with many worked examples,
•	 using scientist-friendly terminology.

The 8 chapters are 1: Explore (EDA), 2. Measure (Measurement Process Characterization), 3. Characterize 
(Product Process Characterization, 4. Model (Regression), 5. Improve (Design of Experiment), 6. Monitor 
(SPC), 7. Compare (Hypothesis Testing), and 8. Reliability.

As a measure of its Youden-like utility, this e-Handbook:

1.	 has been viewed ~ 650,00 to 800,000 per year for the last 15+ years, and

2.	 has served as Google’s top- (or 2nd top-) hit for many common statistical terms (e.g., Youden plot, probability 
plot, hazard plots, contour plots, ppcc plots, box-cox normality plots, bihistograms, block plots, consensus-
mean plots, etc.)

To access the e-Handbook: http://www​.itl​.nist​.gov​/div898​/handbook​/

To access its useful statistical graphics gallery: https://www​.itl​.nist​.gov​/div898​
/handbook​/graphgal​.htm
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This gallery is ordered by common problem category, with a variety of graphical methodologies assembled 
under each category. Figure 5 shows a page from the Univariate problem category.

Figure 5: e-Handbook Graphics Gallery, page 1 of Univariate

1.3: Statistical Software
Youden was the consummate problem-solver and tool developer. In that light, note that SEL has had 2 major 
contributions to the statistical software tools arena, both of which have played key roles in the field of early 
state-of-the-art statistical computing:

1.	Omnitab: This system was first released in 1968 and was headed by SEL colleague Dave Hogben 
with assistance by SEL’s Sally Peavy, Ruth Varner, and Shirley Bremer. When Omnitab was released, 
there were only 5 stat software systems in the world: including BMDP (UCLA) and Roald Buhler’s P-Stat 
(Princeton). In the early 1970’s, Omnitab was carried from NBS by my colleague Brian Joiner and was 
modified by Brian and the (Tom & Joan) Ryans to serve as a Penn State in-class computational teaching 
tool. Eventually it morphed into Minitab, which of course is still in heavy use today.

2.	Dataplot: This public-domain system was developed and first released in 1978 by Jim Filliben. It 
was designed for interactive graphics and non-linear fitting, and it was the most popular public-
domain software system for such in the early 1980’s, with many non-NBS installations across industry 
and government. It was the first statistical software system presented at the prestigious ASTM ACM 
SIGGRAPH Computer Graphics ’81 Conference [Filliben, 1981]. Along with SEL’s Alan Heckert, 
Dataplot still carries on today with decades’ worth of standardized EDA graphical tools-in the spirit of 
Youden (and Tukey). One such tool, for example, uses the Youden Plot and applies it to the analysis 
of 2-level orthogonal designs. Other tools include 4-plot univariate analyses, PPCC (Probability Plot 
Correlation Coefficient) plots, box-cox normality plots, consensus-value plots, block plots, standardized 
10-step EDA analysis of orthogonal 2-level sensitivity analysis designs, etc. All graphics in this Youden 
manuscript are Dataplot-generated.
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For graphics commands: https://www​.itl​.nist​.gov​/div898​/software​/dataplot​/refman1​/ch2​/homepage​.htm

For analysis commands: https://www​.itl​.nist​.gov​/div898​/software​/dataplot​/refman1​/ch3​/homepage​.htm

For homepage, graphics gallery, & free downloading: http://www​.itl​.nist​.gov​/div898​/software​/dataplot​/

1.4: DEX Workshops
Jack Youden gave a remarkable 200+ lectures and workshops over his career. Many of those talks focused 
on principles and techniques of experiment design. In a similar fashion (and with additional inspiration from 
my Princeton professor Stu Hunter with his own equally remarkable career in creating/teaching/applying 
experiment design), it became apparent that efficient and rigorous experimental plans were critical to research 
success for the NBS/NIST scientist/engineer. In this context, DEX training has been an ongoing priority for 
NBS/NIST/SEL over the last 5 decades. Figure 6 presents a history (from 1977 to 2019) of SEL DEX training 
given both within NBS and outside of NBS in the post-Youden SEL-era:

Jack Youden  
(Photo: Public Domain)

Figure 6: NBS/SEL DEX Workshops
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1.5: DEX: Standardized Online Access to 2-Level Designs
With Youden’s example-by-doing, and with methodological roots going all the way back to Fisher, DEX/DOE 
quickly became an essential component in what the SEL statistical consultant offers the NBS/NIST researcher. 
In particular, over the decades, it has become increasingly obvious as to the central role that orthogonal 
2-level factorial designs play in efficiently addressing the sensitivity/screening analysis problems that NBS 
researchers encounter daily. For a given (k factor, n run) experiment, two immediate issues arise for the 
researcher:

1)	 how does one construct the design, and

2)	 how does one determine the confounding structure for the fractionals.

In this regard, and in the additional regard of having an auxiliary in-class tool to assist in the aforementioned 
DEX Workshops, this led to the design and construction of a single, multi-tabbed, Excel file which serves as 
a handy one-source repository for all of the 2-level orthogonal full and fractional factorial designs (along 
with confounding structure) in the most frequently-encountered factor domain (k = 2, 3, 4, . . . ​, 11). For many 
of the designs, credit is due ultimately to the pioneering work of Box, Hunter, & Hunter (see p. 410 of their 
original classic text “Statistics for Experimenters” (1978), and p. 272 of their edition 2 (2005)). The designs 
(and confounding) for a given number of factors k are accessible by selecting tab k of this worksheet file). For 
example, Figure 6-accessed by selecting tab 5 of this excel file-shows all of the full and fractional designs 
for k = 5 factors. This design file has been transferred to ASQ and may be accessed at https://my​.asq​.org​
/communities​/files​/177​/5731

Figure 7: Excel File, Tab 5 (for 25 and 25-p Designs & Confounding)
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Upon reflection, it is indeed sobering (to this writer) to consider that all of these post-Youden NBS/SEL 
contributions owe their existence to a single book (Fisher’s 1925 Statistical Methods for Research Workers), 
and to the 3 people (Condon, Eisenhart, and Youden) who had made it a priority to read that book. In the 
absence of those 3 interconnected people and events, it is entirely plausible that subsequent events-including 
SEL’s establishment/existence/contributions and NBS’s unblemished tenure as the nation’s metrology laboratory 
of last resort-would not have come to pass.

Summary-Post-Youden: NBS/SEL
Upon reflection, it is indeed sobering (to this writer) to consider that all of these post-Youden NBS/SEL 
contributions owe their existence to a single book (Fisher’s 1925 “Statistical Methods for Research Workers”), 
and to the 3 people (Condon, Eisenhart, and Youden) who had made it a point to read that book. In the 
absence of these 3 interconnected people and events, it is entirely plausible that subsequent events-including 
SEL’s establishment/existence/contributions and NBS’s unblemished tenure as the nation’s metrology laboratory 
of last resort-would not have come to pass. On a more positive note, the “bottom line” for this entire Post-
Youden NBS/SEL section 1 (awards, pubs, software, workshops, etc.) is of course obvious: the spirit of Youden 
is still alive, well, and pervasive in SEL at NBS/NIST-50+ years later.

2. Post-Youden: Standardized DEX/EDA Tools: 4 Recommendations
The 1969 Wilks Awards to Jack Youden states:

“. . . ​for his extensive contributions to the art and practice of experimentation in the sciences and 
engineering through conception and lucid exposition of novel, rather elementary techniques of statistical 
analysis and crafty application of standard methods; and through his . . . ​indefatigable energy and 
phenomenal effectiveness as a speaker . . .”

We here highlight the phrase “novel, rather elementary techniques of statistical analysis” (which focuses on 
Youden as a Stat/EDA tool developer) and link it with the second half of this Youden Address’ title: “The Role 
of DEX & EDA for Standards, & the Role of Standards for DEX & EDA”. It is my belief that for certain categories 
of problems, standard EDA methodologies should exist and should be routinely applied whenever such 
problem-types arise. Just as calibration standards in science are critical for accuracy; methodology standards 
in data analysis are critical for insight. In the spirit, for example, of the Youden Plot being a “standard” 
powerful tool for interlab problems, we would like to recommend 4 such similar (in spirit) “standard” tools 
(EDA graphical analysis methodologies) that have been developed over the years. These are routinely used to 
provide powerful insight for the following 4 problem types at NBS/NIST (with obvious applications beyond to 
science, engineering, and industry):

1.	 Univariate: 4-plot

2.	 Interlab: consensus-value plot

3.	 Comparative: block plot

4.	 Sensitivity Analysis: DEX 10-step analysis

We use this Youden Address forum to share them because of their similarity in spirit to both the Jack 
Youden (and the John Tukey) approach for extracting information and insight from data. Because of space 
considerations, we present only a limited discussion here; for further reading, see:

1.	 Chapter 1 of the NIST/SEMATECH e-Handbook of Statistics: http://www​.itl​.nist​
.gov​/div898​/handbook​/,
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2.	 the e-Handbook’s graphics gallery: https://www​.itl​.nist​.gov​/div898​/handbook​/eda​/section3​/eda33​.htm,

3.	 as well as Dataplot’s graphics gallery: https://www​.itl​.nist​.gov​/div898​/software​/dataplot​/gra​_gall​
/homepage​.htm.

We (biasedly) believe/hope these 4 tools would receive “Youden’s blessing” in both spirit and substance.

2.1 Standardized Tool #1: 4-Plot for Univariate Problem
The univariate problem type is the simplest one-we have a column of numbers. What can we say about them? 
The underlying model for this problem is:

Y = c + e;

where c is a typical value and e is an error term with (location 0, some scale, and some distribution). The 
assumption is often made that the observations are independent of one another.

The generic starting point for our standardized analysis (the “4-plot”) is driven by the question:

Q. Is this process in statistical control?

That is, are the numbers emanating from the “process” behaving like:

1.	 random numbers

2.	 from a fixed distribution,

3.	 with a fixed location, and

4.	 with a fixed scale.

With an implicit fifth item to this list being

5.	 with no outliers

If the above 5 items hold, then we made state that the process is “in statistical control” (or more rigorously, 
that there is no evidence from the data that the process is “out of statistical control”). If the process is deemed 
“in control”, then we may advantageously (but cautiously) make probability statements not only about where 
the process has been, but also about where the process will be in the future. We may thus go from mere local 
data summarization to global data inference.

In response to these 4 questions, we recommend the “4-plot” consisting of the following plots are for 
“standard” use:

1.	 run sequence plot: Yi vs dummy index i

2.	 lab plot: Yi vs Yi-1

3.	 histogram

4.	 normal probability plot (ordered Yi vs order stat medians from a N(0,1) distribution)
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In figure 8 we apply the 4-plot analysis to an ideal: simulated normal N(100,10) data. Interpretationally from 
the figure, we note that the run sequence plot has no drift and has a fixed variation band, the lag plot has no 
structure, the histogram is bell-shaped, and the normal probability plot is linear. Further, the linearity of the 
normal probability plot is quantitatively affirmed by the normal probability plot correlation coefficient (see 
Filliben [1975]). Note also that no outliers are present. We admit that this 4-plot analysis does not formally 
test as to whether the distribution is fixed per se; rather, it does alternatively provide feedback as to what 
distribution the data has-an informative starting point. In summary, we would conclude from figure 8 that this 
process is “in control” (as it should be since these numbers were random by construction). Thus in the spirit 
of elementary (but insightful) graphics espoused by Youden, we posit that the 4-plot method would fall into 
that category. In practice, the 4-plot is routinely used as a “standard” first pass (necessary, but not always 
sufficient) tool for any univariate data.

The second 4-plot example (figure 9) is from 200 observations drawn from an NBS/NIST Center for Building 
Technology beam deflection process. What can be said about this data and the process behind the data? 
Interpretation-wise, we see that the run sequence plot shows no drift, and has a fixed variation band (with a 
hint of a single outlier around observation 160), the lag plot is rather strikingly elliptical and has 4 off-elliptic 
points (generated from 2 outliers), the histogram is bimodal, and the normal probability plot fails. From this 
4-plot, we would conclude -especially from the lag plot Lissajous-like pattern-that the underlying process is 
cyclic, with not just 1-but 2-outliers.

We find the 4-plot to be a useful check of any univariate data, and any residuals (regression, ANOVA, etc.) 
from any model. For more details, see

1.	 e-Handbook: https://www​.itl​.nist​.gov​/div898​/handbook​/eda​/section3​/4plot​.htm

2.	 Dataplot Graphics Gallery: https://www​.itl​.nist​.gov​/div898​/software​/dataplot​/gra​_gall​/4​-plot​.htm

3.	 Dataplot 4-Plot Command: https://www​.itl​.nist​.gov​/div898​/software​/dataplot​/refman1​/auxillar​/4​-plot​.htm

Figure 8: 4-plot for Normal Data (n = 100)
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Figure 9: 4-plot for Beam Deflection Data (n = 200) 
Note: A higher resolution image is available at https://my​.asq​.org​/communities​/files​/177​/5730

2.2 Standardized Tool #2: Consensus Value Plot for Interlab Problem
For the second tool, we look at another important NBS/NIST standardization problem: the interlab consensus 
problem: given data from many “expert” labs on a common reference material, what consensus value should 
be used as the “certified value” that goes on the institutionally official NIST SRM (Standard Reference Material) 
Certificate-and with what uncertainty? The model is:

Y = c + f(lab) + e

where ideally the f(..) function is null, but in reality may be non-null due to (small or large) interlab procedural 
or environmental differences. In spite of the unknown f(..), what should the consensus estimate be for c, and 
with what uncertainty?

The solution we use and share is the Consensus Value Plot (see figure 10). It consists of 2 subplots. The left 
subplot is a plot of the raw data (vertically) versus the lab ID (horizontally). The right subplot is a plot of 
consensus value estimates (vertically) versus estimation method (horizontally). To estimate a consensus value 
from data, we find that rather than attempting to determine the optimal statistical consensus value estimator 
by ascertaining as to which assumptions from which estimators hold for this dataset, we rather try a different 
approach by computing a battery of 13 different consensus values from 13 different commonly-used statistical 
consensus estimators (mean of means, Mandel-Paule, Vangel-Rukhin, DerSimonian-Laird, median of means, 
midmean, trimmed mean, etc.) and display such estimators (and uncertainties) on the right subplot. In many 
cases, most-if not all-of the estimators are relatively near-equivalent in value and uncertainty. In practice, this is 
a useful starting-point robustness conclusion unto itself. At a very minimum, the multi-estimate plot and right-
margin tabulation gives the researcher practical worst-case bounds on the consensus value and its uncertainty.

If the 13 estimates happen to be near-equivalent, then parsimony dictates that we use the simplest estimator 
(= mean of means). If they are not equivalent, we find ourselves recommending the simplest robust conservative 
estimator, namely, the median of means. In the majority of consensus-value data cases we have encountered, 
this conservative value has been more than “fit” for the standards scientist’s “purpose at hand”. The median of 
means is an especially good choice in negating the effect of some “outlying” labs. In 
any event, in the spirit of Youden’s “novel, rather elementary techniques of statistical 
analysis”, this Consensus Value Plot displays both the raw input data as well as the 
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output collection of possible answers, and so serves as a good first (and sometimes last) pass for the consensus 
value problem.

As it turns out, the data we chose to use for figure 10 was from Youden’s classic paper thickness problem 
[Youden, 1962] involving 24 high school students, and their measurement of the thickness of a paper page. 
Each student in effect became a “lab”. The usual 4 consensus value questions arose:

1	  Are the 24 students/ “labs” equivalent?

2.	 Any outlying students/ “labs”?

3.	 What is a consensus value?

4.	 What uncertainty?

It is clear from figure 10 that student 21 has a possible outlier (and Grubbs test could be used to confirm this), but 
nevertheless the simple median of means (here = 0.07761 +- .00212) would again be a good outlier-independent 
robust choice for the consensus value and (k = 2) uncertainty. Visually from the right subplot, this is similar in value to 
the mean of means and other classic estimators (with their more stringent assumptions). In any event, for this prob
lem type, the Consensus Value Plot is an excellent starting point which gives not only outlier & robustness insight 
immediately, but also provides a superset of probable final consensus value estimates. This plot is most commonly 
used at NBS/NIST when the robustness factor is laboratory; but may of course be used in a broader setting for any 
factor (batch, vial, operator, day, etc.) which ideally should have no effect, but in reality may have a non-negligible 
contaminating effect. This ASQ Stat Digest serves as the first reference for the Consensus Value plot.

Figure 10: Consensus Value Plot for Youden Paper Thickness Data (n = 96) 
Note: A higher resolution image is available at https://my​.asq​.org​/communities​/files​/177​/5732

2.3 Standardized Tool #3: Block Plot for Comparative Problem
Yet another classic NBS/NIST problem is where the response is some function of several factors, but the focus of 
the study is whether a particular (scientist-chosen) single factor (= the “primary” factor) 
is significant or not, and whether the significance conclusion robustly holds over all of 
the settings of all of the other factors. If the primary factor effect is consistent over all 
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robustness factor settings, then our primary factor conclusion is robust; if not consistent, then an interaction exists 
in which case it must be identified and characterized. The model is:

Y = f (Xp, Xr1, Xr2, Xr3, . . . ​, Xrk) + e

where the function f is unknown (and will remain unknown), the factor Xp is the primary factor for which a 
definitive effect statement is to be made, and where the Xr1, Xr2, etc. are the robustness factors which serve 
to embroaden the scope of our conclusions about Xp. At NBS/NIST, common primary factors are method, 
device, algorithm, operator, fabrication, etc. In fact, any factor may be chosen as a primary factor-it is up to 
the scientist do decide whether a particular factor is (or is not) of special scientific interest to him/her for this 
study, and then determine by subsequent experimentation as to whether that factor is in fact significant, and 
whether that significance conclusion is robust over all other factors.

The most common graphical method in practice for determining the significance of a single factor is the scatter 
plot. Such a plot may yield significance (via t tests or ANOVA), but unfortunately yields very little additional 
insight as to the robustness of that conclusion, and virtually no information about the existence and nature of 
possible interactions between the primary factor and some robustness factor.

As an example, let us draw on the classic 25 chemical reactor example in Box, Hunter, & Hunter [2005], 
pages 260–261]. This is a (k = 5, n = 32) factor full factorial experiment with response = % reacted, and the 5 factors 
are feed rate, catalyst, agitation rate, temperature, and concentration. For sake of demonstration, let us assume that 
the researcher is particularly interested in the effect of X2 = catalyst, and so the title of this comparative study might 
be something like “Assessment of the effect of catalyst on chemical reactor efficiency” as opposed to the more usual 
multifactor sensitivity analysis title: “Determination of the most important factors affecting chemical reactor efficiency”.

Figure 11 is a scatter plot of efficiency vs each of the k = 5 factors. Focusing on the second factor (X2: catalyst) 
we have % reacted on the vertical axis vs the primary factor X2 placed as usual as the second item on the 
horizontal axis. From the plot, we conclude that catalyst is indeed significant (with catalyst 2 yielding % 
reacted values which are on average about 25 units higher than catalyst 1 (further, a t test or ANOVA would 
affirm that this primary factor is in fact statistically significant). That is the good news; the bad news is that the 
scatter plot does not have the ability to convey robustness information and interaction information.

Figure 11: Scatter Plots for Box, Hunter, & Hunter Chemical Reaction Data (n = 32) 
Note: Additional information is available at https://my​.asq​.org​/communities​/files​/177​/5729
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An alternative and preferred analysis to the scatter plot is the block plot (figure 12). On the vertical axis is 
the mean % reacted; on the horizontal axis are all 16 combinations of settings for the 4 robustness factors. 
Where does primary factor information get conveyed? It is done via the plot character (1,2 = catalyst 1,2). 
The block plot thus takes the global question Q. Does catalyst have an effect? and decomposes it into 16 
local questions: Q. Does catalyst have an effect for robustness condition 1? For robustness condition 2? . . . ​
For robustness condition 16? Does catalyst have an effect for most conditions? For all conditions? If yes, 
then that yields a much stronger, much more compelling, and much more robust conclusion than a simple 
scatter plot. In fact, from figure 12, we see that for this example, catalyst 1 is indeed smaller than catalyst 
2 for each and every one of the 16 conditions, and so by simple binomial (instead of t and ANOVA) 
considerations, we may confidently conclude that catalyst is not just statistically significant but is robustly 
statistically significant.

Figure 12: Block Plot for Box, Hunter, & Hunter Chemical Reaction Data (n = 32) 
Note: Additional information is available at https://my​.asq​.org​/communities​/files​/177​/5728

Further (and even better) figure 13 shows a sorted normalized block plot. To construct this plot, the first 
step is to normalize each block in figure 12 by computing each of the 16 block means and then subtracting 
them out within each block. We thus have formed residuals-localized for each block. These residuals have 
“amplified” primary factor information. The resulting normalized plot would force us to focus on what is 
happening within a block (the primary factor effect) and not be distracted by what is happening between 
blocks (robustness factor effects). After such normalization, the next step is to note the 16 catalyst effects 
(here = the 16 block heights), and then simply sort the 16 blocks from smallest to largest and carry along the 
corresponding 16 horizontal axis robustness conditions. The net result is figure 13.
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Figure 13: Sorted Normalized Block Plot for Box, Hunter, & Hunter Chemical Reaction Data (n = 32)

From figure 13: we see 3 items of interest:

1.	 we see that the catalyst effect is not constant over all 16 conditions; that is, there is an interaction (an 
existent interaction is one of the most important conclusions that can flow out of a comparative analysis);

2.	 we see clearly those robustness factor conditions which yield smaller catalyst effects, and those which 
yield larger catalyst effects. (This specific condition dependency is also useful to know).

3.	 by inspection of the conditions, we see the dominant robustness factor that drives the catalyst effect 
(the block size). For this example, we see (highlighted in red in figure 13) that the X2 catalyst effect 
is consistently small when factor X4 (temperature) is at its lower setting, and the X2 catalyst effect 
is consistently large when factor X4 is at its higher setting. This is a clear visual identification and 
confirmation that there is an X2*X4 (catalyst*temperature) interaction.

In the NBS/NIST environment, when a single factor has been chosen as the focus of the scientific study, 
then the block plot has been routinely used beyond the scatter plot to provide robustness and interaction 
information. Even stronger, it is our considered opinion and experience that the sorted normalized block plot 
is among the best of EDA techniques for discovering and understanding interactions, if existent, in comparative 
experiments. For more details, see

1.	 Filliben, J.J., Cetinkunt, S., Yu, W.Y., and Donmez, A. (1993)

2.	 e-Handbook: https://www​.itl​.nist​.gov​/div898​/handbook​/eda​/section3​/blockplo​.htm

3.	 Dataplot : https://www​.itl​.nist​.gov​/div898​/software​/dataplot​/refman1​/auxillar​/blocplot​.htm

2.4 Standardized Tool #4: DEX 10-Step for Sensitivity Problem
In the NBS/NIST environment, especially in the scientific research component, the most common scientific 
problem type by far is that of sensitivity/screening, whereby the scientist has a response of interest that is 
affected by many factors, and is interested in knowing what factors (and interactions) are important, and what 
are unimportant. The most popular and efficient NBS/NIST designs for this problem are the 2-level orthogonal 
full and fractional factorial designs. The primary deliverable for the sensitivity/
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screening problem type is a ranked list of factors (and interactions)-with the sorting done based on the 
magnitude of the effect. Given that, a “free” secondary deliverable is a list of the best settings of the k factors, 
and a “free” tertiary deliverable is a formal empirical model.

The model for this sensitivity/screening problem type is:

Y = f(X1, X2, X3, . . . ​, Xk) + e

where the function f is unknown, and X1 to Xk are factors of equal scientific interest. Many important NBS/NIST proj
ects at NIST have utilized 2k-p designs, including the World Trade Center Collapse 213-9 (k = 13 factors, n = 16 + 1 runs).

For this problem type and utilized 2-level designs, we have constructed over the years the following 
“standardized” 10-step procedure which has given us great insight into “understanding the system”. In the 
spirit of Youden’s “novel, rather elementary techniques of statistical analysis”, we recommend the following 
“standardized” 10-step analysis procedure for the analysis or sensitivity/screening data via 2k and 2k-p 
orthogonal fractional factorial designs (along with the expected deliverable from each step):

1.	 ordered data plot: to determine best settings and most important factor

=> best settings & important factors

2.	 dex scatter plot: to determine most important factors (see, e.g., figure 11)

=> important factors

3.	 main effects plot: to determine most important factors

=> important facctors & best settings

4.	 interaction effects plot: to determine important 2-term interactions + derive confounding structure

=> important factors and interactions

5.	 dex block plots: to determine important factors and interactions

=> important factors and interactions

6.	 dex youden plot: to determine important factors and interactions

=> important factors

7.	 dex effects plot: to produce ranked list of important factors and interactions

=> ranked list of important factors and interactions

8.	 half-normal probability plot: to determine most important factors and interactions

=> important factors and interactions

9.	 cumulative residual SD plot: to assess goodness of fit of sequential models

=> good empirical model

10.	 contour plot: to assess an interaction & determine direction for future experiments

=> best factorial direction for next experiment

Space-considerations prevent a further detailed discussion of these 10 techniques; rather, we note that this 
parsimonious, standardized, 10-step graphical methodology exists for this problem type, and we present the 
following summary display (figure 14) which applies the 10-step analysis to the same Box, Hunter, & Hunter 
[2005, pages 260–261] classic 25 chemical reactor example as first mentioned in 
section 2.3, but treating all 5 factors as “equal” in terms of scientific interest, and so it 
becomes (as BHH intended) a traditional sensitivity/screening problem type.
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Figure 14: DEX 10-Step Analysis for Box, Hunter, Hunter Chemical Reaction Data (n = 32)

For a detailed explanation of the construction and interpretation of the 10-step analysis, see https://www​.itl​.nist​
.gov​/div898​/handbook​/pri​/section5​/pri59​.htm

For high-resolution images for each of the 10 plots in figure 14, see https://my​.asq​.org​/communities​/files​/177​/5729

For the 10-step analysis applied to a 16-run sensitivity analysis of 8 factors affecting the error in a NIST 
HRTEM (High Resolution Tomographic Electron Microscope) along with the start-to-finish problem statement, 
design, confounding structure, data, script, conclusions, and the resulting published manuscript (in the physics 
journal Measurement Science & Technology [Scott, 2007]) see https://my​.asq​.org​/communities​/files​/177​/5733

Summary-Post-Youden: Standardized DEX/EDA Tools: 4 Recommendations
In summary, section 2 (Post-Youden: Standardized DEX/EDA Tools: 4 Recommendations) presents 4 
standardized EDA methodologies that have evolved at NBS/NIST in the post-Youden era. The 4 tools (4-plot, 
consensus-value plot, block plot, and DEX 10-step analysis) have been selected to illustrate the ongoing spirit 
of Youden at NBS/NIST in pursuing “novel, rather elementary techniques of statistical analysis”. The NBS/
NIST Standards Laboratory environment is conducive to the development and application of such tools and 
promotes the entire concept that the tools themselves should have a standardization component. Further, 
the 4 problem-areas that we have chosen to discuss here (univariate, interlab, comparative, and sensitivity/
screening) are obviously important in science, engineering, and industrial pursuits everywhere, and thus the 
described tools will have applications well beyond NBS/NIST.

Conclusion
I thank the FTC/ASQ/ASA for the honor, privilege, and opportunity to provide this exposition of Jack Youden’s 
remarkable career from the vantage point of a distant ancestor/alumnus at NBS/NIST/SEL. Further, I am most 
appreciative of ASQ Statistics Division (in the persons of Mindy Hotchkiss and Harish 
Jose) to graciously allow my Youden story to carry over to 2 editions of the ASQ Stat 
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Digest. Indeed, it would only be such a person with the capabilities, contributions, and impact of a Jack Youden 
that would necessitate the existence of such a 2-part series.

Jack Youden was the consummate problem-solver, consultant, and collaborator, who was a creative and 
seminal thinker in his development of relevant and straightforward design & analysis methodologies. He 
was a tireless NBS ambassador in his dissemination of solid, insightful methodology to the outside research 
community. He was a prolific, clear-minded writer, as well as a masterful oral communicator, committed to the 
enthusiastic evangelization of the virtues of rigorous statistical design and insightful statistical analysis. He set 
a standard for professional expertise and commitment that carries on to today.

We saw how his standards for excellence have served as the omnipresent backdrop for the NIST Statistics Division 
over the 5 decades of the post-Youden era. Though impossible to match, it has been possible to be strive for, 
and SEL’s activities, awards, research efforts, publications, workshops, software, and stat methodology tools all 
reflect the legacy left behind by Jack Youden, the problem-solver. Even with 50 years of advancements in our 
computational and communication tools, the Youden legacy of excellence in consulting, communication, and 
methods development-all enhanced by his unbounded creativity and passion-still provides the framework for us 
to optimal and effective in assisting the scientists, engineers, researchers, and industrialists of the world.

We saw that Youden leveraged his expert knowledge of DEX & EDA to make for a better world-starting with 
better NBS standards. Even in his world of limited computer power, he showed us how to leverage DEX & EDA 
to be of maximal benefit to the researcher-in whatever discipline. We contended that Youden would approve of 
the 4 methodologies we recommended, and that there are abundant opportunities to apply standards for DEX 
and EDA development-not in the sense of limiting creativity, but in the sense of having such “standard” tools be 
routinely applied to “standard” problem categories. The net effect of this is to assure that underlying structure 
gets ferreted out and insight maximized. And analogously just as calibration standards are critical for increased 
scientific accuracy, we contended that statistical methodology standards are critical for increased insight.

Finally, we pose the hypothetical question that if Youden were alive today, what would he be doing? What problems 
would he be solving? What computer tools would he be using? What DEX/EDA methods would he be developing? 
We can all provide our own answers to these questions which may differ in detail, but for sure we know that his 
brainpower, servant-personality, commitment, passion, energy, versatility, creativity, and DEX/EDA talents would be 
just as effective today as it was 50+ years ago. Jack Youden would succeed as Jack Youden in any era.
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Covid-19 Data and Process Behavior Charts
Every day we are told how many new confirmed cases of Covid-19 were reported and how many people 
have died of this disease. How do we use these numbers? Routinely newspapers get it wrong. (A recent 
headline reported the number as “soaring” when in fact they were reporting the smallest daily change in the 
past month.) So how can we overcome such a total misunderstanding of the data? Only by putting the data in 
context.

Table 1 shows the daily number of new confirmed cases of Covid-19 in the U.S. These are the values posted 
by the European CDC at noon London time, thus they are slightly smaller than values that are reported later 
each day. Typically, these daily numbers are graphed as a bar chart. Figure 1 shows this bar chart for the 
data in Table 1 up to 4/14.

Table 1: Daily Number of New Confirmed Covid-19 Cases in U.S.
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Figure 1: Bar Chart for Daily Number of New Confirmed Covid-19 Cases in U.S.

As the values climb up to some potential peak this bar chart often makes people think of a probability 
distribution. We look for “the peak,” and want to know when we have gotten “over the hump.” Confusing this 
bar graph with a histogram leads to all sorts of crazy ideas. One correspondent suggested that we might 
compute a “z-score” using each country’s version of Figure 1. This would allow us to quantify how far along 
the “curve” each country was located. (Clearly Figure 1 shows that the U.S. has a z-score that is approaching 
+1, and the epidemic will be over by early May!)

Unfortunately, the data in Table 1 do not represent a probability distribution. They are a time series. And 
according to William Playfair, the man who invented the bar chart, we should not place time series data on a 
bar chart. The reason being that the bar chart is for comparing amounts. A bar chart draws our attention to 
the vertical heights of the bars. But with a time series our mind wants to know how things are changing over 
time. To get a graph that will draw our eyes in the direction that our mind wants to go, to see how the series 
changes over time, we need to use a running record rather than a bar chart.
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Figure 2: The Daily Number of New Confirmed Covid-19 Cases in U.S.

By getting rid of the bars, we can even compare running records. Figure 2 shows the daily numbers of new 
Covid-19 cases. The red line comes from Table 1. The blue line is the combined daily counts for the U.K., 
Germany, France, Spain, and Italy. Since these five countries combined have essentially the same population 
as the U.S., the time series in Figure 2 make a reasonable comparison. In addition, as of May 7, these six 
countries represent over 58% of the World’s cases of Covid-19, and 71% of the World’s Covid-19 deaths, even 
though they only contain 9% of the World’s population.

Figure 2 shows that although the Covid-19 pandemic began about 10 days earlier in Europe than in the U.S., 
the U.S. had caught up within a month. In both cases the number of new cases climbed quickly at first. Then, 
as interventions came into effect, the numbers plateaued. While it is very hard to make any case for a decline 
in the U.S. numbers, there does appear to be a slow decline in Europe over the past few weeks.

Notice that no “analysis” was required to make sense of Figure 2. When we know that things are changing, as 
they always are in any epidemic, the running record becomes self-interpreting. While the purpose of analysis 
is insight, the best analysis is always the simplest analysis that provides the needed insight. After all, we have 
to share our discoveries with others, and it is always easier to explain a simple analysis than a complicated 
one. And what can be simpler than letting the data speak for themselves?

NONSENSE HAPPENS
Nevertheless, people all over the World are trying to use statistical axes to “analyze” the Covid data. After 
all, we can’t possibly consume “raw” data. We have to process it first to make it 
unintelligible.
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One of these statistical axes is the process behavior chart. Process behavior charts are incredibly useful and 
versatile. They allow us to filter out the noise so we can pay attention to the signals. They allow us to identify 
those points in time where a change occurs in an otherwise steady-state system. As one colleague of mine 
quipped, they ought to be called “has-a-change-occurred” charts.

But, as we have seen, an epidemic is anything but a steady-state system. It grows, evolves, and eventually 
declines. Here we do not need to ask the question “Has a change occurred?” because we know that the 
epidemic is constantly changing.

No, the question here is “How is the epidemic currently changing?” And the only useful answers for this 
question depend on estimates of the growth rate. How to estimate this growth rate will be explained later.

IGNORING THE NATURE OF THE DATA
Nevertheless, some use the Covid numbers to compute related values like the number of people recovered 
and the number of people ill, and then put these numbers on process behavior charts to ask if these values are 
changing. The problem here begins with the computation. The number of confirmed cases and the number of 
people who have recovered are nothing more than lower bounds on these categories. They are “confirmed” 
cases and “confirmed” recoveries.

When those who were repatriated from China were tested they found that 40% to 50% of the Covid-19 
infections were either asymptomatic or so mild as to have been missed without the tests. Thus, any values 
computed from the confirmed numbers are going to be incomplete, and any analysis of such values will 
invariably be very insensitive.

Others seek to use process behavior charts to identify change points in the progress of the epidemic. However, 
given the nature of an epidemic, change is everywhere, and it is the longer-term trends that matter more than 
the daily values.

Still others wait for the plateau of Figure 2 and then try to use process behavior charts to separate days with 
20,000, 30,000, and 40,000 new cases into categories of “common cause days” and “special cause days.” 
Since we are dealing with a natural phenomenon, where we have no real process inputs, these categories 
have no real meaning here. (Hint: all of these counts are undesirable regardless of how the days are 
categorized.)

SEVEN STEPS TO NOWHERE
And then there are those who get so completely carried away with using their analysis techniques that they lose 
sight of what the data represent. Several of these have been teaching a seven step analysis: for Covid-19 data.

(1)	Begin by assuming the daily counts are modeled by a Poisson distribution and use c-charts to identify 
when the epidemic starts to “grow.”

(2)	When we have a signal of growth, transform the counts by taking logarithms.

(3)	Obtain a regression equation using the logarithms of the daily counts in order to estimate the growth rate.

(4)	Create an XmR chart with sloping limits around the regression equation.

(5)	Re-transform the limits in order to plot them on top of the running record of Figure 2.

(6)	Continue to plot points on Figure 2 until you get a point outside the exponentially increasing limits (on 
the right-hand side).

(7)	On the date corresponding to this point outside the limits declare the epidemic 
to have “peaked.” (This latter point will generally be found a few days after the 
day where the curve in Figure 3 below begins to flatten out.)
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At this point no insight has been created by all of this complexity and analysis. Everything “found” by this seven-
step analysis, the initial growth, the growth rate, and the beginning of the flattening of the curve, is already made 
visible in the simple running records of Figures 2 and 3. No value is added by the seven step analysis. It simply 
uses a lot of computing power in order to decorate Figure 2 with what Edward Tufte calls “non-data ink”, or more 
concisely, “chartjunk.” And of course, they will be glad to sell you some software to create all this chartjunk.

BUT ARE WE DOING BETTER OR WORSE?
This is the question everyone has on their mind when they hear the daily Covid numbers. But the large swings in 
Figure 2 prevent us from seeing the big picture and answering this question. Some days look promising, and others 
look bad. Before we can see the big picture two things have to happen. First, we have put the number of new cases 
in context by using the total number of cases to date, and second, we have to plot these totals on a semi-log plot.

When we combine the daily new cases into the total to date we dampen out the day-to-day swings by the 
ballast of the history of the epidemic. So using the totals is a smoothing technique.

When we plot the totals-to-date on a semi-log plot we make the growth rate of the epidemic visible on the 
graph. Since the growth rate directly answers the question of “Are we doing better or worse?” it is a key 
descriptor for any epidemic.

When we use linear coordinate axes we make amounts visible and comparable—a one unit change means the 
same thing everywhere on the graph. But when we use a semi-log plot we make growth rates visible by turning 
fixed rate growth (exponential growth) into straight lines. If the rate of growth remains the same the growth 
curve will be a straight line on a semi-log plot. Moreover, parallel line segments will always represent the 
same rate of growth regardless of where they appear on a semi-log plot.

So, when we plot the total number of Covid-19 cases to date on a semi-log plot we know that any persistent 
deviation from a straight line will represent a change in the growth rate for the pandemic. It really is that easy.

Table 2 shows the total number of confirmed cases of Covid-19 in the U.S. They come from the same source as 
Table 1. Figure 3 shows the data from Table 2 plotted along with the corresponding combined totals for the 
U.K., Germany, France, Spain, and Italy. In addition, Figure 3 includes the daily totals of confirmed cases for 
South Korea, Norway, and Australia.

Table 2: Cumulative Number of Confirmed Covid-19 Cases in U.S.
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Figure 3: Total Confirmed Cases in the U.S., Five European Countries, South Korea, Norway, and Australia

Any curve on a semi-log plot represents a changing growth rate. As these curves flatten out over time the 
growth rate for the Covid-19 pandemic is slowing. Where they are steeper the growth rate is greater. Once 
more we have a self-interpreting, easy to understand graph of the raw data.

In Figure 3 we see that everyone has flattened their curves. But while everyone started 
out with very similar growth rates, the U.S. has not flattened its curve as much as the 
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others. Consequently the U.S. total count passed that of the five European countries on April 19. On the other 
hand, South Korea, Norway, and Australia illustrate what modern democracies can accomplish in terms of 
flattening the curve. All of this is immediately clear from Figure 3.

Moreover, Figure 3 gives a simple way to make reasonable forecasts. When we use the current slope of a 
curve and extend a straight line we are simply projecting what can be expected without any further changes 
in the growth rate.

QUANTIFYING THE CURVES
One of the ways to characterize the rate of growth is the number of days needed for the total count to 
double. This doubling time can easily be obtained either from the graph or from the table. For example, from 
Table 2, on March 11 there were 1025 confirmed Covid-19 cases in the U.S. On March 14 there were 2174. 
Thus, in mid-March, the number of Covid cases was doubling about every three days. This estimate applies 
everywhere along the reasonably straight portion of the U.S. curve between 3/4 and 3/17.

From 4/4 to 4/13, the doubling time increased to about nine days as may be seen by comparing 277,945 
with 557,571 in the table.

How many days did it take to go from one-half million cases to one million cases in Table 2? The problem 
with this eyeball approach is that with the larger values the curve does not always remain straight for a long 
enough period, so we need a way to actually compute a growth rate.

To use the data to estimate the growth-rate of an epidemic we choose a baseline of several days and compute 
an average daily gain. To compute an average daily gain for the period of 3/11 to 3/14 we begin with the 
four sequential values:

3/11	 1,025

3/12	 1,312

3/13	 1,663

3/14	 2,174

Divide each day’s value by the value for the previous day:

2174/1663 = 1.307

1663/1312 = 1.268

1312/1025 = 1.280

Average these day-to-day gains to get:

Average Daily Gain = 1.285

So during this period the epidemic was growing at an estimated rate of 28.5% per day. This growth rate can 
be converted into a doubling time by the formula:

DoublingTimeinDays= log[2.000]
log[AverageDaily Gain]

Since we are working with a ratio of logarithms it does not matter which base we use for these logarithms (as long as 
we use the same base for both). Here our average daily gain of 1.285 yields a doubling 
time of 2.76 days, which agrees with the simple estimate of about three days found above.
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During the last seven days shown in Table 2 the U.S. growth rate has averaged 2.3%. This corresponds to a 
doubling time of 30 days. This doubling time gives us a benchmark to use in judging how we are doing in 
the future. Since we are currently at 1.23 million, a doubling time of 30 days suggests that by the first week in 
June we might have as many as 2.4 million cases. If we do better than this, we will see it on the graph. If not, 
then this is what we should expect.

South Korea, Norway, and Australia show what can be accomplished in terms of flattening the curve. They 
have growth rates of 0.1%, 0.6%, and 0.3% per day respectively. The five European countries combined have 
a growth rate of 1.2%, and the U.S. is clearly in last place in this race.

Figure 4: Total Confirmed Covid-19 Cases in South Korea, Australia, and Tennessee

Figure 4 shows the daily totals for my home state of Tennessee along with those for South Korea and Australia. 
Tennessee has 6.7 million residents. Australia has 25 million residents. Tennessee’s count of confirmed 
Covid-19 cases passed that of Australia on April 17. South Korea has 51.6 million residents, yet Tennessee’s 
count passed Korea’s count on May 1.

SUMMARY
The best analysis is the simplest analysis that provides the needed insight. With data from an epidemic there is no 
question of whether a change has occurred. Change is everywhere. The question is whether we are getting better 
or worse.

So while the process behavior chart may be the Swiss army knife of statistical techniques, there are times 
when we need to leave the knife in our pocket, plot the data, and then listen to them as they tell their story.
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Understanding Significance Levels
Significance levels in statistics are a crucial component of hypothesis testing. However, unlike other values in 
your statistical output, the significance level is not something that statistical software calculates. Instead, you 
choose the significance level. Have you ever wondered why?

In this column, I’ll explain the significance level conceptually, why you choose its value, and how to choose a 
good value. Statisticians also refer to the significance level as alpha (α).

First, it’s crucial to remember that hypothesis tests are inferential procedures. These tests determine whether 
your sample evidence is strong enough to suggest that an effect exists in an entire population. Suppose you’re 
comparing the means of two groups. Your sample data show that there is a difference between those means. 
Does the sample difference represent a difference between the two populations? Or, is that difference likely 
due to random sampling error? That’s where hypothesis tests come in!

Your sample data provide evidence for an effect. The significance level is a measure of how strong the sample 
evidence must be before determining the results are statistically significant. Because we’re talking about 
evidence, let’s look at a courtroom analogy.

Evidentiary Standards in the Courtroom
Criminal cases and civil cases vary greatly, but they both require a minimum amount of evidence to convince 
a judge or jury to prove a claim against the defendant. Prosecutors in criminal cases must prove the defendant 
is guilty “beyond a reasonable doubt,” whereas plaintiffs in a civil case must present a “preponderance of the 
evidence.” These terms are evidentiary standards that reflect the amount of evidence that civil and criminal 
cases require.

For civil cases, most scholars define a preponderance of evidence as meaning that at least 51% of the 
evidence shown supports the plaintiff’s claim. However, criminal cases are more severe and require stronger 
evidence, which must go beyond a reasonable doubt. Most scholars define that evidentiary standard as being 
90%, 95%, or even 99% sure that the defendant is guilty.

In statistics, the significance level is the evidentiary standard. For researchers to successfully make the case that 
the effect exists in the population, the sample must contain a sufficient amount of evidence.

In court cases, you have evidentiary standards because you don’t want to convict innocent people.

In hypothesis tests, we have the significance level because we don’t want to claim that an effect or relationship 
exists when it does not exist.

Significance Levels as an Evidentiary Standard
In statistics, the significance level defines the strength of evidence in probabilistic terms. Specifically, alpha 
represents the probability that tests will produce statistically significant results when the null hypothesis is correct. 
Rejecting a true null hypothesis is a type I error. And, the significance level equals the type I error rate.  
You can think of this error rate as the probability of a false positive. The test results lead 
you to believe that an effect exists when it actually does not exist.

Hypothesis Testing
Jim Frost
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Obviously, when the null hypothesis is correct, we want a low probability that hypothesis tests will produce 
statistically significant results. For example, if alpha is 0.05, your analysis has a 5% chance of producing a 
significant result when the null hypothesis is correct.

Just as the evidentiary standard varies by the type of court case, you can set the significance level for 
a hypothesis test depending on the consequences of a false positive. By changing alpha, you increase or 
decrease the amount of evidence you require in the sample to conclude that the effect exists in the population.

Changing Significance Levels
Because 0.05 is the standard alpha, we’ll start by adjusting away from that value. Typically, you’ll need a 
good reason to change the significance level to something other than 0.05. Also note the inverse relationship 
between alpha and amount of required evidence. For instance, increasing the significance level from 0.05 to 
0.10 lowers the evidentiary standard. Conversely, decreasing it from 0.05 to 0.01 increases the standard. Let’s 
look at why you would consider changing alpha and how it affects your hypothesis test.

Increasing the Significance Level
Imagine you’re testing the strength of party balloons. You’ll use the test results to determine which brand of 
balloons to buy. A false positive here leads you to buy balloons that are not stronger. The drawbacks of a 
false positive are very low. Consequently, you could consider lessening the amount of evidence required by 
changing the significance level to 0.10. Because this change decreases the amount of required evidence, it 
makes your test more sensitive to detecting differences, but it also increases the chance of a false positive from 
5% to 10%.

Decreasing the Significance Level
Conversely, imagine you’re testing the strength of fabric for hot air balloons. A false positive here is very 
risky because lives are on the line! You want to be very confident that the material from one manufacturer is 
stronger than the other. In this case, you should increase the amount of evidence required by changing alpha 
to 0.01. Because this change increases the amount of required evidence, it makes your test less sensitive to 
detecting differences, but it decreases the chance of a false positive from 5% to 1%.

It’s all about the tradeoff between sensitivity and false positives!

In conclusion, a significance level of 0.05 is the most common. However, it’s the analyst’s responsibility to 
determine how much evidence to require for concluding that an effect exists. How problematic is a false 
positive? There is no single correct answer for all circumstances. Consequently, you need to choose the 
significance level!

While the significance level indicates the amount of evidence that you require, the p-value represents the 
strength of the evidence that exists in your sample. When your p-value is less than or equal to the significance 
level, the strength of the sample evidence meets or exceeds your evidentiary standard for rejecting the null 
hypothesis and concluding that the effect exists.
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Interval Estimation
In this edition of “Risk and Uncertainty” we’ll discuss the important topic of interval estimation and its relation 
to uncertainty. The interval estimation by definition has to do with uncertainty. There are so many different 
cases for statistical intervals that we can barely do it justice here. The excellent Wiley text, [1], by Hahn and 
Meeker, Statistical Intervals, as well as the many papers by Hahn and others are the go-to sources for many of 
the details of this topic. Here we try and bring attention to a sample of the most popular cases.

Without doubt, the interval most people are familiar with is the confidence interval. To review, a confidence 
interval applies to an unknown parameter of a parametric distribution. This includes continuous and discrete 
cases. For continuous variables familiar examples include the normal, and lognormal distributions; for discrete 
cases, familiar examples include the binomial and Poisson distributions. Many other cases might be added. 
Confidence intervals were developed by the Polish mathematician Jerzy Neyman and presented in a famous 
1937 paper, Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability [2].

What can we say about confidence intervals? All of the main pantheon of applications have well known 
formulas—means and variances for a normal distribution, the binomial event probability p, the Poisson and 
exponential rate constant λ. There are also the well-known cases of comparing two means, variances, event 
probabilities and rates. The one important point to make about confidence intervals is that, as a final result, 
we can’t make any probability statement about the interval. For example, suppose we have constructed a 95% 
confidence interval for a mean from a normal distribution and the final result is: 150 ≤ μ ≤ 165. We can’t say 
that P(150 ≤ μ ≤ 165) = 0.95. That’s because there is no longer a random variable within the parentheses that 
could vary according to a probability distribution. The mean is either in the interval or it is not. Let us now look 
at the random variable theoretic rendition for this interval.

	
x −

tα/2S
n

≤ µ ≤ x +
t1−α/2S

n 	
(1a)

Where the sample mean and standard deviation are the random variables x  and s, n is the sample size, 
and tα/2 and t1−α/2 are the appropriate quantiles from a t distribution with n − 1 degrees of freedom to make the 
probability of this statement equal to 1 − α. In this rendition it is perfectly legitimate to state that:
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The reason is that there is no data being used, just the two random variables x  and s. The quantity μ is the 
fixed unknown mean of the normal we are sampling from. If we were to execute this interval many thousands 
of times, each time sampling from the same normal distribution and with differing data each time, we would 
find that approximately 100(1 − α)% of the time the constructed interval would contain or “capture” the true 
value μ. In practice we only have one example of this and once constructed we only have numbers for each 
limit—not random quantities anymore. Since, it is the hypothetical process we are working with (i.e. one 
example from many possible), we use the term “confidence” in place of probability. Some statisticians use the 
notation C(L ≤ μ ≤ U) = 100(1 − α)%, where “C” signifies that the constructed interval is a confidence interval, 
and L and U are the limits of the confidence interval determined using (1a) with the available data.

There are several ways to show how this works graphically using simulation. Here is a 
short favorite example. Suppose we sample from a normal distribution with μ = 1000 
and σ = 10. Use a sample size of n = 10 and repeat the sampling 10,000 times saving 

Risk and Uncertainty
S. Luko, Collins Aerospace
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x  and s each time. For each case, construct 95% confidence limits (L and U) for μ using (1a). Use t = 2.26216 
(the upper 97.5% quantile from a t distribution with 9 degrees of freedom). Save the statistics L and U. Plot 
L against U in a scatter plot. This shows a “cloud” of 10,000 possible (L, U) pairs for this sampling case. An 
example of this result is shown in Figure 1. In the figure draw two lines cutting the plot into four quadrants. The 
lines are drawn at the true value μ = 1000 for both axis. Then the lower right hand quadrant is the case where 
L ≤ 1000 and U ≥ 1000, meaning that L ≤ μ ≤ U for this case where we have used μ = 1000. In this example, we 
find that 95.04% of the (L, U) points lie in the lower right hand quadrant so that approximately 95% of the time 
these pairs are correct in that μ = 1000 is contained within the interval. The remaining 5% of cases are shown 
in the upper right and lower left quadrants where μ = 1000 lies outside the (L, U) interval. In practice we only 
have one case and that is like sampling a random point from this cloud.

Figure 1: Example of Confidence Limits L and U sampled from a normal distribution  
with μ = 1000 and σ = 10 and n = 10; Number of iterations 10,000

The constructed limits L and U and the width, w = U-L are also random variables in this setting. It is interesting 
to note that the width, w, of the confidence interval can be quite variable. In this example the empirical 1st and 
99th percentiles of w were 6.872 and 22.402 respectively. Of course there are one sided variations of the 
confidence interval where the intervals are of the form (L, +∞) or (−∞, U).

A handy method that uses Monte Carlo simulation can be used for numerous cases where normal distributions 
are used. For example, in creating confidence intervals for percentiles, for mean differences and for the quality 
metrics Cpk or Ppk. The method starts with a set of data assumed to come from a process in a state of statistical 
control and normally distributed with unknown parameters μ and σ. Then we seek possible (μ, σ) pairs that could 
have generated the data. This is the so called fiducial confidence interval, [3], construction technique. When the 
data, x, are normally distributed and x  and s are the sample mean and standard deviation in a sample of n 
observations, the following two well-known results provide the way forward with this.

	
t = x − µ

S / n 	
(2a)

	
y =

n −1( )S2

σ 2 	
(2b)

The variable, t, has student’s t distribution with n − 1 degrees of freedom; the variable 
y has a chi-square distribution with n − 1 degrees of freedom. t and y are indepen
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dent. Start by generating 100,000 t’s and y’s in a program such as Minitab. Save these to two columns. 
Set t and y equal to the expressions (2a) and (2b) solving for μ and σ respectively. Save the (μ, σ) pairs to 
two columns. These last two columns constitute the (μ, σ) plausible values for the parameters that could have 
generated the data we see. The (μ, σ) pairs are then used to calculate any number of metrics for the process. 
From the distribution of such metrics the confidence interval can be calculated. Suppose we are interested in 
the 1st percentile of the distribution of individuals from the process. Calculate μ − 2.326σ for each case. There 
will result 100,000 cases from which the confidence interval for the 1st percentile may be studied. Figure 2 
shows a screen shot of the data organization for this execution in Minitab. The data constitutes a random 
sample of n = 50 where x  = 100.300 and s = 4.5538 are the sample statistics.

Figure 2: Screen Shot for the Fiducial Monte Carlo Example—From Minitab

From the data window, C1 contains the initial date (n = 50); C2 and C3 are the random and chi-square 
values; C4 and C5 are the recovered μ and σ pairs; and C6 is the calculated 1st percentile using μ and σ. 
Figure 3 shows the distribution of X1 resulting from this execution, Table 1 shows the empirical percentiles of 
the distribution of X1 where we show the confidence 95% interval limits in red. For this example, the interval is 
86.805 to 99.887.

Figure 3: Empirical Results, 1st Percentile, Fiducial Monte Carlo, 100,000 Cases
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Table 1: Empirical Frequency Distribution of Figure 3 Data.

It is an easy exercise to develop the quality metric Ppk for this data. The specification requirement is bi-lateral, 
100 ± 18 or 82 to 118. We add two columns using a formula, “mu-82” and “118-mu”, where “mu” is the value 
of μ in column C4. A third additional column is added with a formula that calculates the minimum of (mu-82, 
mu-88) divided by “3σ” where “σ” is the column C5 entry. The final result is 100,000 Ppk values that might 
have given rise to the data. Figure 4 shows this result with the 10th percentile indicated. That number is about 
1.1; Table 2 is the associated empirical frequency distribution.

Figure 4: Empirical Results, Ppk, Fiducial Monte Carlo, 100,000 Cases
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Table 2: Empirical Frequency Distribution of Figure 4 Data

This data then shows the lower 90% confidence bound on the true Ppk to be about 1.1. Still other metrics 
may be studied using this technique. For example, for each μ, σ pair we could generate another sample and 
calculate various statistics such as the sample min or max.

Prediction Intervals
The prediction interval is known to almost anyone who has taken a first statistics course where simple linear 
regression is part of the course. What is surprising is the limited status in basic courses of the simple prediction 
interval when using the normal distribution. Its derivation is so similar to the confidence interval that it is worth 
summarizing it here. First, the prediction interval for a single future observation is an interval that would 
contain a single future observation with some confidence C. This can be important in a single shipment of 
a product that only happens occasionally, but the characteristic of concern is known from prior data to be 
normally distributed.

Suppose X is normal with some mean and variance, μ and σ2. Let x  and s stand for the sample mean and 
standard deviation from a sample of n observations. Let y be a future value, unrealized, from this normal 
distribution. The combination y − x  is also normally distributed with mean 0; further, y and x  are indepen
dent and the variance of y − x  is then σ2(1 + 1/n). Then Z = y − x( )/ σ 1+1/ n{ }  is standard normal and we 
have immediately that:

	 P x − Zα/2σ 1+1/ n ≤ y ≤ x − Z1−α/2σ 1+1/ n( ) =1−α 	 (3)

This is the known σ case. Notice that there are two random variables in (3) - x  and y. We’ll use the previous 
example where the population being sampled was Normal with μ = 1000 and σ = 10 to study the behavior. 
Select 10,000 samples of n = 10, calculate and save x  for each case. Construct intervals (L, U) for each 
case using (3) with n = 10 and σ = 10. Use ±1.96 for Z resulting in a 95% interval. Then randomly select the 
next observation, y, for each of the 10,000 cases. Ask, how many times in 10,000 is the random y selection 
contained in the corresponding interval? In this execution we find that 94.72% or about 95% of the time the 
random y is contained within the corresponding interval. We can further calculate the coverage probability for 
each interval. That is for each (L, U) interval pair calculate F(U) − F(L) where F(x) is the CDF for the distribution 
being used (here normal, μ = 1000 and σ = 10). In that calculation, we find that the mean coverage is 0.95002 
or just about 95%. Therein lies a key point—the 100C% prediction interval has an 
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average coverage probability of 100C%. In fact, only 68.9% of the time did the coverage exceed 95% in this 
example. This will be important when it comes to tolerance intervals.

Several variations are important. The first is that when σ is unknown—which is typical—we substitute student’s t 
in for Z using the appropriate degrees of freedom (here 9). Doing this will increase the variation in the interval 
width but will have the same behavior. Using the means and standard deviations from the 10,000 simulated 
sets of n = 10 and using the same future values, y, as previously, we find that in 95.01% of the cases that y 
was captured by the interval. In addition, the average coverage probability is 95.01% despite the variation 
increase in the standard deviation of coverage. Thus, the expected coverage is 95% and any random interval 
would capture the future y 95% of the time in repeating the process. Other metrics from the process can also 
be looked at such as ppm and other “6-sigma” metrics and ratios of percentiles.

Another important variation is the case where we want an interval for two or more future values. In that case 
we only have to adjust Z or t depending on if σ is known or unknown. There is an exact adjustment procedure 
that can be made to handle this case, but most practitioners use the much simpler Bonferroni adjustment. This 
is illustrated for the unknown σ case. If we want to construct a two sided 100(1 − α)% prediction interval for the 
next k observations, then make an adjustment to the t value used to tα/(2k) and t1−α/(2k). For example, for the above 
example if we want a 95% prediction interval for the next 5 values then use t0.0025 and t0.9975 in the calculation. 
These values are ±3.69. The increase in t makes resulting intervals and inclusion probability larger for any single 
value but about 95% for simultaneous inclusion of 5 values. We can also construct one sided intervals by the 
appropriate adjustment to Z or t. This theory can also be used to construct prediction intervals for a future sample 
mean or variance and even a k out of n future sample case. Reference [1] has all of the details of these cases. 
Two papers by Hahn, [4] and [5], contain further detail and examples and variations of the normal distribution 
prediction interval case. In addition, these papers contain extensive references tracing the history of this topic.

Prediction intervals can also be constructed for attribute type data and using nonparametric methods. The 
common attribute cases include the binomial and Poisson distributions. There are methods for each of these 
that use a normal approximation in their formulation, and in those cases, we are usually told that the observed 
number of initial events in an initial sample size must be 5 or more. For example one rule of thumb is to require 
np ≥ 5 and n(1 − p) ≥ 5 (some authors use 10 on this). For cases where the observed data fails to meet this 
criterion, we have to be careful because the normal approximation being used may compromise the prediction 
interval. There is a general way though that can handle any number of observations, including 0, that uses 
Monte Carlo simulation. This method depends of the relationship between the cumulative binomial distribution 
and the beta distribution. One way to portray this is shown below [6].
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(4)

The left hand side is the binomial CDF and remarkably, this is cast in terms of the continuous beta distribution 
on the right side. In a binomial prediction interval, we have the current data, x observed events in a sample 
of size m. We want an interval (L, U) that we can expect a future binomial observation y to fall in a future 
sample of size n using some confidence C. What we need are potential values of the parameter p that could 
have generated the data we see now (x in m); then use those values with the new sample size n and randomly 
select an observation, y, from each case. The distribution of y is then used to construct the random interval for 
the future y. This is another fiducial Monte Carlo application.

Start by setting the right hand side of (4) equal to a random uniform on [0,1]; then solve that equation for 
p giving a plausible p that could have generated the data we see now (x in m). Repeat this 100,000 or 
more times saving the results (pi) each time. Next, use each pair (n, pi) to simulate a random future binomial 
observation yi. Save the yi values and use this distribution as the basis for constructing the prediction interval.  
It is very easy to do this using the freeware program R or even in MS Excel; below is a short R program (Exhibit 1), 
just the bare minimum, that will generate the distribution of y we need.
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Exhibit 1: R code for the Binomial Prediction Interval Monte Carlo
#file name: BinomialPredictionInterval(R).txt

library(MASS)

k=100000	 #INPUT: number of Monte Carlo runs

m=235		  #INPUT: original sample size

r=9		  #INPUT: original number of observations, “successes”

n=140		  #INPUT: future sample size

a=r+1	 #beta parameter

b=m-r	 #beta parameter

u=runif(k,min=0,max=1)

p=qbeta(u,a,b)

y=rbinom(k,n,p) #random binomial predictions

write(y,file="d:/q/y.txt",ncolumns=1)	 #saving y to a file in directory Q

write(p,file="d:/q/p.txt",ncolumns=1)	 #saving p to a file in directory Q

#eof, end of file

When this code gets executed, the results, y, are saved to a text file, which can then be analyzed further in 
R or exported to say Minitab. An example given in [1] regarding a binomial prediction interval is instructive. 
In example 6.5.3 in [1] the following numbers are used: m = n = 1000, and x = 20 observed now. The authors 
quote an exact method due to Thatcher, A. R. (1962) and state that this is based on the Hypergeometric 
distribution and is used iteratively. The 95% prediction interval answer given in the text is [9, 35], and thus a 
future observation y from a future sample of n = 1000 can be expected to fall within this interval 95% of the 
time in repeated sampling. The large sample normal approximation method gives the interval [8, 32] and this 
is seen to be reasonably close to the exact method. The results from using the Monte Carlo simulation method 
discussed here show the following distribution of y following 100,000 cases—see Figure 5a.

The 2.5th and 97.5th percentile of this distribution will define the prediction interval using this method. In this 
case the interval is [10, 35], remarkably close to the exact method. Next suppose that x = 1 event has been 
observed in m = 500 and we want an upper 95% prediction interval for y the number of events in a future 
sample of n = 1000. Figure 5b shows this case using the R code shown above. There were 96,182 cases 
of y ≤ 11 in the resulting set of y’s making the 96th percentile approximately 11. Then there is at least 95% 
confidence if stating y = 11 as the upper prediction bound.

Figure 5a: Monte Carlo Binomial prediction Interval
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Figure 5b: Monte Carlo Binomial prediction Interval

Although the Poisson distribution has a large sample normal approximation for prediction intervals, we can 
use the same Monte Carlo methodology for this case by using the relationship between The Poisson CDF and 
the chi-square distribution [6]. That relationship is:

	
F r( ) = f x( ) =

2λs

∞

∫ g y( )dyx=0

r∑
	

(5)

In (5) F(r) is the Poisson CDF evaluated at x = r and f(x) is the Poisson mass function. The rate constant is λ and 
the observations are made on the interval of size s making the Poisson mean λs. There are x = r events observed 
on the interval s. The right hand integral is the upper tail chi-square distribution with 2(r + 1) degrees of freedom. 
So, setting the right hand side to a random uniform variate on [0,1] one can then solve for a plausible rate λ that 
gave rise to the data we see (r events on s). Doing this many times generates the target distribution of λ. Then the 
Poisson distribution with each λi, together with the future interval of size t is used to select a random value of future 
events y. The distribution of y is then used to develop the lower and upper prediction interval confidence bounds 
for the future, unrealized, value of y. The following minimal R code (Exhibit 2) will generate the future values, y.

Exhibit 2: R code for the Poisson Prediction Interval Monte Carlo
#file name: PoissonPredictionInterval(R).txt

library(MASS)

#

k=100000	 #INPUT: number of Monte Carlo observations to perform

s=5	 #INPUT: original sample size or observational region size

r=24	 #INPUT: original number of observed events

t=0.5	 #INPUT: future sample size or observational region size

#

df=2*(r+1)	 #degrees of freedom

v=rchisq(k,df)

L=v/(2*s)	 #lambda

y=rpois(k,L*t)	 #random observations from Poisson with mean L*t

#

write(y,file="d:/q/y.txt",ncolumns=1)   #saving y to a file in directory Q
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write(L,file="d:/q/L.txt",ncolumns=1)   #saving L to a file in directory Q

#eof, end of file

The following is another example from the Hahn and Meeker text, reference [1]. In their material on the Poisson 
prediction interval they give an exact formula due to Wayne Nelson (similar to the binomial case) that is used 
iteratively to find the upper bound for y. They also develop the large sample normal approximate methodology. In 
example 7.5.4 they use a case where x = 24 unscheduled shutdowns have been observed over a period of s = 5 years. 
There is a need to estimate the worst-case number of shutdowns (95% upper prediction interval) in the next 6 months. 
The 95% prediction upper bound value quoted is y = 6 future events in a six month period. Here the next period in 
years is t = 0.5 years. Using the Monte Carlo method, Figure 6a shows the output distribution of future values y. In 
these 100,000 cases, the 95th percentile is y = 6 exactly matching the table values from the Hahn and Meeker tables.

Figure 6a: Hahn & Meeker Example 7.5.4 Poisson Prediction Interval, t = 6 months

In [1] the authors continue with another variation on this example. They use the same preliminary data (x = 24 on 
s = 5 years) and construct a 4 year interval for future values, y. The quoted result for the future y is the interval [9, 34]. 
The Monte Carlo method generated 100,000 cases shown in figure 6b. In those cases, the proportion of values 
falling in the interval [9,3 4] were 0.955 or 95.5%, thus the Monte Carlo methods agrees very well with this example.

Figure 6b: Hahn & Meeker Example 7.5.4 Poisson  
Prediction Interval, t = 4 years
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Nonparametric (NP) cases of prediction interval estimation have numerous variations. The NP prediction interval 
is an interval constructed from a current sample of size m for which we want to state that in a second sample of 
size n at least some number r of n will be contained in the interval. We can have both one sided and 2-sided 
prediction intervals. We assume that the samples used are random selections from a large population or that the 
samples were selected from a process in a state of statistical control in the sense of Shewhart [7]. NP prediction 
intervals are based on the theory that any random sample of size (m) selected from any distribution, partitions 
that distribution into m + 1 intervals or “bins”, each of which is equiprobable on average for the next observation 
to fall in. Another way to state this is to use the theory that for any distribution E{F(X(i))} = i/(n + 1). That is, the order 
statistics divide a distribution into equiprobable bins on the average. For example, with m = 3 initial observations 
there are 4 such bins: (−∞, x(1)], [x(1), x(2)], [x(2), x(3)], and [x(3), +∞). In theory, each of the four bins has an equal 
probability for a forth (future) observation to fall in. If a 4th value is selected, the probability that it falls within any 
of the 4 bins is 0.25 for each bin. The probability that it falls to the right of x(1), that is to say in the highest 3 bins, 
is 0.75. When a second value is taken, if we next want the probability that this new value should fall to the right 
of x(1) we have to consider that the sample size has changed from 3 to 4. By conditioning on the fact that the 
first has fallen above x(1) in the initial sample size of 3, we calculate the probability that the second will also fall 
above x(1). If y1 represents the first of the additional samples and y2 the second of the additional samples, and the 
initial sample size was m = 3, the formal conditional probability argument is:

P{y1 ≥ x(1),y2 ≥ x(1)} = P{y2 ≥ x(1)|y1 ≥ x(1)}P{y1 ≥ x(1)) = (4 / 5)(3/ 4) = 0.6 	 (6)

Thus there is a 60% probability that if we select 2 new values from the same distribution as the first 3, both values 
will be larger than the smallest in the initial sample. All of the variations of NP prediction intervals can be analyzed 
using conditional probability arguments. This gets further complicated when we want to use order statistics other than 
the sample min or max! Here we’ll focus on a few simple cases involving the sample min or max. First, consider the 
three commonly required intervals based on the extreme order statistics of the initial sample X(1) and X(n).

Type 1, One sided interval, case 1: [X(1), ∞)

Type 1, One sided interval, case 2: (−∞, X(n)]

Type 2, Two sided interval: [X(1), X(n)]

If we want to use the sample extremes (min and/or max) in a sample of size n for bounding a future single 
observation, then the following table shows how this works.

Table 3: For an initial sample size n, the interval contains or includes a future single observation  
with confidence C. Note—all subscripted variables in this table denote order statistics

Suppose n = 31, what is the confidence that the next observation, y, will be greater than the current sample 
min? The above table shows this interval to be 31/(31 + 1) or about 96.87%. If we want to claim that the 
sample min and max will capture the next observation in this case, the confidence is 
(31 − 1)/(31 + 1) or about 93.75%. Consider if we wanted to claim that the sample 
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extremes would contain the next observation, what sample size would give 95% confidence? Use (n − 1)/
(n + 1) = C. Solving for n, find that n = (1 + C)/(1 − C). If C = 0.95 is the desired confidence, then n = 39 is 
required. For more than one future observation to be contained as a one sided interval, it is easy to show that 
C = n/(n + k) is the confidence in an interval containing the next k future observations. In this case the intervals 
are one sided (type 1, see above). For the two sided interval (type 2, see above), we can still use a conditional 
probability argument similar to what was used previously. In that case when we carefully formulate this case 
using conditional probability, the confidence formula for the type 2 inclusion of the next k observations is:

	
C =

n n −1( )
n + k( ) n + k −1( ) 	

(7)

As an example, suppose a sample of size n = 35 and we wish to use the sample extremes as a prediction 
interval for the next k = 4 observations. Equation (7) says that the confidence we can have in this interval is 
approximately 80%. If we must have 90% confidence, then we can use (6) with C = 0.9, and k = 4 and solve 
for n; or we can use trial and error. A few trials shows that n = 75 will just make C equal to 90%. In using this 
theory we have to be careful about outliers. Although these intervals are distribution free, legitimate outliers 
can and do occur and can trump the assumption of stability required for this application to work correctly.

Tolerance Intervals
Tolerance intervals are statements about the entire population or process output from a stable process. Intervals 
can be one or two sided, and be parametric or nonparametric. In the two sided case, an interval (a,b) means that 
a proportion, p, of all future values, X, from the population/process will fall within the interval with some stated 
confidence C. Thus, we have to specify two numbers for this type of interval, p and C. For a normal distribution, 
a two sided tolerance interval takes the form x ± ks  where x  and s are the mean and standard deviation from 
a random sample of n observations, and k is the tolerance factor looked up in a table as a function of n, C and 
p. The case of the normal distribution is well developed and, although complex to compute, numerous resources 
are available for this including tables, approximate formulas, applets, standards and software applications. The 
software program Minitab has included tolerance intervals in the last several versions of the program. Reference [1] 
contains extensive tables for single and two sided case. A short table appears below.

Table 4: Table 8 extracted from ASTM E2586-19, Standard Practice for Calculating and Using Basic Statistics
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It is interesting to note that practitioners often use the interval x ±3s  as a quick study of process capability 
regardless of the sample size. Many would then go on to claim that 99.73% of the process output would 
be contained within the “three sigma” interval - just using the usual normal distribution 3-sgma rule and the 
interval as if x  and s were the true μ and σ. But there is little confidence in that statement for modest sample 
size. In fact, for n = 30, a common sample size, the statement would be correct only about 41% of the time. 
Table 2 shows the factors k that should be used to make such a statement with 90% or 95% confidence. For 
90%, k = 3.69 and for 95% k = 3.90 should be used.

An interesting variation for the two sided case comes about if σ is assumed known. This greatly simplifies the 
analysis of factors, k, in the single sided case. The derivation uses basic principles and is not all that difficult, 
but details are used sparingly here. A short how to summary and table of a few common cases for n, p and 
confidence C are shown below.

Exhibit 3: Construction of single sided Normal distribution tolerance Intervals  
with σ assumed known or given.

a)	 Select p, the minimum proportion contained in the interval, and C, the confidence coefficient for the 
tolerance interval. The single sided bound to be determined and is of the form x − kσ  or x + kσ  
depending on if a lower or upper bound is the requirement.

b)	 For the lower bound, let Z0 be a standard normal quantile such that P(Z > Z0) = 1 − p.

c)	 Associate with C a standard normal quantile Zc such that P(Z ≤ Zc) = C.

d)	 Then k = Z0 + Zc / n

Table 5 shows selected examples of this.

Table 5: Selected Values, k, for constructing one-sided normal tolerance intervals with known  
standard deviation (p = proportion contained, C = confidence)

As an example, suppose we have a sample of n = 40 observations from a normal distribution with known/
assumed σ = 12 and x  = 852. If we want to construct a lower bound for 99.9% of the population/process with 
90% confidence, use k = 2.9831. Then that lower bound is calculated as 842–2.9831(12) = 806.2. That interval 
would contain at least 99.9% of future values above the limit—with 90% confidence.

The non-parametric case for constructing tolerance intervals uses the order statistics in a sample of n 
observations as the bases of the tolerance interval limits. Basic formulas are available for the case of using 
the extremes (min and/or max) as the bounding limits for the calculation. There are 
several basic cases.
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For the case of [X(1), +∞) or (−∞, X(n)] we have essentially had a success run of size n at or above the smallest 
order statistic or at or below the largest order statistic. If we want to claim that at least a proportion p is 
greater (smaller) than or equal to X(1) (X(n)) we have a success run of length n. This works like a binomial with 
probability p and n successes. The following is the relationship among p, C and n.

	 pn ≥1−C 	 (8)

Equation (8) May be solved for either p, n or C. This gives:

p ≥ 1−Cn , 	 C ≥1− pn, 	 n ≥
ln 1−C( )
ln p( ) 	 (9a, b, c)

For the question of sample size, use equation (9c). Should we want to use 95% confidence and claim that a 
proportion of at least p = 0.99 lies above x(1), then using (9c) we find that n = 299 will just achieve this. We find 
that a number of standards used in the materials world use this sample size and for just this reason. When 
C = 0.9 and p = 0.9, n of 22 will work. This is a common sample size used in the automotive industry and 
elsewhere. Note that the two versions of the one sided case are identical in this analysis and that these are 
frequentest intervals—no prior Bayesian information is being used. For the case [x(1), x(n)], at least 100p% of the 
population lies in the interval with confidence C, when a sample size of n is used. Analysis of this case uses 
the theory of order statistics from a U(0,1) distribution. References for this include [8] and [9]. In [8] the author 
traces this result to the statistician S. S. Wilks [9] and further states that Shewhart put the tolerance interval 
idea in his head! The following equation solves the problem.

	 npn−1− n −1( )pn ≥1−C 	 (10)

In (10) we find the relationship among sample size, n, confidence, C, and proportion captured, p, when 
considering the interval as [x(1), x(n)]. We can solve (10) by iteration for the unknown when any two of n, C 
and p are specified in advance. For example, when p = 0.99 and C = 0.9 we find that n = 388 will just make 
(10) true. If n = 100 is used and C = 0.95, solving we find that p = 0.9534 is the largest proportion of the 
population we can claim is captured by the interval [x(1), x(n)]. It is also possible to extend tolerance intervals 
based on order statistics to an arbitrary interval based on any two order statistics. This is further discussed in 
[8] and [9].

Summary
Interval estimation is a vast area in statistical methods. In this article we have tried to expose a small sample 
of the many techniques available under this topic including parametric and nonparametric methods and 
techniques for attribute type data. It is unfortunate that the principle interval estimation method used by many 
practitioners is the simple confidence interval for means and proportions and that this is often used for “all 
occasions”. So many other, more appropriate, interval methods are available! Readers are encouraged to 
pursue a few of the references cited, particularly [1] and [5]. For those wanting detail, [9] contains many 
gems.
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MINI PAPER

Melvin Alexander, Analytician

Statistical Model Comparison Predicting Signs of Penetrating Abdominal  
and Pelvic Injuries using R

Abstract
This presentation takes data from a medical radiology case study of Saksobhavivat et al. (2016) designed to 
detect signs from Multidetector Computed Tomography (MDCT) imaging in diagnosing and treating traumatic 
penetrating abdominal and pelvic injuries (PAPI).

Machine Learning techniques of Random Forests, Extreme Gradient Boosting, Stepwise Logistic, and Penalized 
Regression using the R programming language environment were used to compare these statistical models to 
determine the strongest signs as indicators of diagnosing PAPI following penetrating abdominal injury.

I will demonstrate the R statistical programming language to create several machine-learning statistical models.

Results of the image analyses helped radiologists and clinicians discriminate patients requiring surgery, 
observation, or non-operative management.

Introduction
Penetrating abdominal and pelvic injuries (PAPI) are uncommon, potentially life-threatening, trauma injuries 
resulting from stab wounds, gunshot wounds (GSW), or other types.

Multidetector computed tomography (MDCT), along with advances in other medical imaging technologies has made 
this method one of the major modes of emergency management of PAPI for injury detection and severity, replacing 
the need for conducting unnecessary surgical explorations and physical examination of traumatic PAPI patients.

Determining the accuracy of MDCT, when compared to the gold-standard surgical findings, has been an important 
and challenging area of study. Multiple studies have looked at the overall accuracy of triple contrast CT versus single-
contrast CT assessment of penetrating torso or abdominopelvic trauma, especially as it pertains to detection of PAPI.

This presentation uses the R statistical language to identify key signs that are 
indicators of PAPI from MDCT using modern machine learning techniques.
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Materials and Methods
The University of Maryland Medical Center’s Institutional Review Board (IRB) approved the prospective 
observational study. The written waiver of informed consent complied with the Health Insurance Portability and 
Accountability (HIPPA) regulations by the IRB.

Triple contrast (oral, rectal, and intravenous) MDCT has been commonly used as the primary means of 
evaluating penetrating abdominal and pelvic resulting from gunshot or stab wounds. Contrast media increases 
visibility of internal abdominal structures in CT imaging. Few studies have reported with high accuracy that 
triple contrast CT predicts the need for surgical treatment of penetrating abdominal and pelvic injuries.

CT images of 171 patients underwent MDCT imaging for surgery (77/171, 45.0%) or clinical follow-up (94/171, 
55.0%) between October 2011—April 2013 at the University of Maryland Medical Center’s (UMMC) Shock 
Trauma Center. The images were interpreted by three independent radiologists, (one attending radiologist and two 
secondary readers). Each radiologist (Column No in Table 1) interpreted each patient’s scan and recorded findings 
on dedicated worksheets (Figure 2), blind to each other’s imaging, clinical data, or patient’s management outcomes.

Sixteen signs have been cited in the medical literature as key signs indicating PAPIs. Direct, primary signs that 
indicated GastroIntestinal (GI) injury included: GI wall discontinuity (Q7), subjective GI wall thickening (Q8), 
intramural air (Q4), bleeding into GI lumen (Q14), leakage of enteric contrast material (Q6), visible leakage of 
any GI content (Q5), if enteric contrast was not present at the injury site), and visible penetrating wound track 
(Q15) outlined by hemorrhage, air, and/or ballistic fragments) that extended up to the GI wall.

Indirect, secondary CT signs that were also evaluated included: any evidence of peritoneal violation (Q1), 
retroperitoneal violation (Q2), free intraperitoneal/retroperitoneal gas adjacent to the GI injury site (Q3a), free 
intraperitoneal/retroperitoneal gas remote to the GI injury site (Q3b), peritoneal thickening or enhancement (Q12), 
co-existing penetrating injuries to intraperitoneal solid organs (Q13), free intraperitoneal fluid (Q9), mesenteric 
hematoma (Q10), and active mesenteric hemorrhage (Q11). The 17th overall CT diagnosis of GI injury (CToverall) 
rated the degree of overall confidence for the presence (or absence) of a PAPI. All signs used a 5-point confidence 
scale (1-definitely absent, 2-may be present but unlikely, 3-unequivocal, 4-likely present, 5-definitely present).

Cross-validation (i.e., the approach of avoiding overfitting that leads to poor prediction responses) divided the 
full dataset (513 observations in Table 1) into training and test data tables using a randomized 80:20 split. 
Training data (411 or 80% of all observations, Validation = 0) built the regression models. Test data (102 
or 20% of the remaining observations, Validation = 1) assessed the predictive accuracy of the regression 
models from the training data with confusion matrices of the correct and misclassifications.

Figure 1: Image from Saksobhavivat et al. [1] of Penetrating 
Abdominal Pelvic Injury (PAPI) (Reprinted with permission from the 

European Society of Radiology)
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Figure 1 of Saksobhavivat et al. [1] showed an Axial (top-down) cross-sectional view of a gunshot wound to the left 
pelvis with rectal contrast material extravasation. Extravasation was where contrast media leaked into surrounding 
tissues. Reformatted CT images demonstrated a wound tract (Q15, arrowheads) outlined by hematoma, bullet and 
bone fragments. There was both a descending colon (Q13, curved arrow) and jejunal wall (Q8, white arrows) 
thickening. Rectal contrast material (Q6, red arrows) extravasation was seen throughout the peritoneum.

Hematoma is swelling of clotted blood within tissues. The jejungal wall makes up 20 percent of the small 
intestines and is used to evaluate the small bowel during follow-through evaluation (a.k.a. SBFT).

The arrows and arrow heads point to certain signs that radiologists saw that help diagnose patients and 
determine effective medical treatments.

R has available many cutting-edge, machine learning tools like Random Forests, Extreme Gradient Boosting 
(XGBOOST), Penalized LASSO and Stepwise Logistic regression. See Hastie, Tibshirani, Friedman [5] for more 
information.

Figure 2: Worksheet with the Ordinal Scale used by independent radiologists to record data  
(Reprinted with permission from the Author)

The ordinal scale was adopted because:

•	 past reviews of the literature only related signs to binary response outcomes (1 = PAPI presence, 0 = PAPI 
absence)

•	 it provided an improved measurement scale that extended beyond nominal, 
two-level outcomes of previous studies
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•	 the scale was like other scales I helped develop in other studies
•	 careful training was given to readers so that they could use the rating scale to score CT scans 

consistently and correctly (using reference images of “known” signs that appeared on images)
•	 this scale was useful for assessing inter-reader reliability, reproducibility or variability among of image readers

Table 1: Selected Records of the 513 ReaderData Dataset for Analysis

Figure 3: Importance Plot of the Random Forest

Figure 3 shows the Variable importance plot for pbi_rf (PAPI response variable) identifying the top six 
variables (Ctoverall, Q5, Q7, Q8, Q10, and Q13) based on Model Accuracy (MeanDecreaseAccuracy) and 
Gini (MeanDecreaseGini) value. The table on the right listed variables in decreasing order of importance 
based on a measure (MeanDecreaseGini for node or sign impurity).

The Confusion Matrix showed the predictive performance (Accuracy of 0.9314 or 
93.14%) of the Random Forest Model on the Test dataset.
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Figure 4: Cross-validation Error (Binomial Deviance) by Log(lambda) Plot and Regression Coefficients from  
the LASSO Model, assessing the model accuracy against the Validation Test Data from the R GLMNET package

Figure 4 plots the cross-validation error according to the log of lambda. The left dashed vertical line 
indicates that the log of the optimal value of lambda is approximately −5, which is the one that minimizes the 
prediction error. This lambda value gave the most accurate model percentage of 94.12% (100* [76 + 20]/ 
[76 + 20 + 4 + 2] = 100*0.94118 = 94.118% ≈ 94.12%).

Figure 5: Stepwise Logistic model on the Test data resulting from R’s 
StepAIC() option of the glm function in the MASS library.
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Figure 5 shows that Ctoveral, Q2, Q3b, Q5, Q9, Q10, Q11, Q12, and Q13 were the strongest signs with a 
prediction accuracy of 95.02% (100 * [22 + 75]/ [75 + 22+ 3 + 2] = 100* 0.9509804).

Figure 6: Relative Importance Variables and Confusion Matrix from XGBOOST

Figure 6 shows that Ctoverall, Q1, Q8, Q5, Q13, Q1, and Q10 were the strongest signs with a prediction 
accuracy of 76.47% (100 * [78]/ [78 + 24+ 0 + 0] = 100* 0.7647).

Table 2. Model Comparisons on the Test Data

Conclusion:
The Stepwise Logistic model performed the best on the Test Data with a prediction accuracy of 95.10%. The 
next best models were the penalized LASSO, and Random Forest with prediction accuracies of 94.12% and 
93.14%, respectively. The worst performing model in this example is the XGBOOST.

The Stepwise Logistic model had a simpler mathematical form, was easier to interpret than the other models, 
and because of parsimony, was chosen as the most practical model to deploy. The strongest predictors from the 
Stepwise Logistic Model were: Ctoverall, Q2, Q3b, Q5, Q9, Q10, Q11, Q12, and Q13. Signs Q4, Q2, and 
Q10 are other indicators that radiologists and clinicians should especially notice also. The most accurate CT 
signs across all models were Ctoverall, Q5, Q10, and Q13. Although Saksobhavivat et al. [1] found that the 
combination of Q8-GI wall thickening, Q6-leakage of GI content, and Q15-wound tract 
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extending up to the bowel wall increased diagnostic accuracy. The common signs of Ctoverall, Q5, Q10, and 
Q13 from all four models provide additional indicators that radiologists should look for when viewing CT scans 
for PAPI.
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Upcoming 
Conference 
Calendar

1) Data Science, Statistics & Visualization 2020 Virtual Conference
Week beginning 29 July 2020

Data Science, Statistics & Visualization (2020) is a virtual conference aimed at bringing together 
researchers and practitioners interested in the interplay of statistics, computer science, and 
visualization, and to build bridges between these fields. The conference highlights contributions 
to practical applications, and in particular those which are linking and integrating these subject 
areas. Presentations will be oriented towards a very wide scientific audience and will cover 
topics such as machine learning, the visualization of data, big data infrastructures and analytics, 
interactive learning, advanced computing, and other important themes.

More information available at: https://www​.samsi​.info​/

2) RSS International Virtual Conference
Week beginning 7 September 2020

The RSS International Conference regularly attracts more than 600 attendees from over 40 countries, 
providing one of the best opportunities for anyone interested in statistics and data science to come 
together to share knowledge and network. This year’s conference will once again feature top keynote 
speakers and invited talk sessions but will be slightly different. Due to the impact of the Covid-19 
pandemic, the RSS 2020 Conference is moving online.

More information available at: https://rss​.org​.uk​/

3) JSM 2020 Virtual Conference
Week beginning 2 August 2020

Joint Statistical Meeting offers a unique opportunity for statisticians in academia, industry, and 
government to exchange ideas and explore opportunities for collaboration. Beginning statisticians 
(including students) can learn from and interact with senior members of the profession.

More information available at: https://ww2​.amstat​.org​/
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